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Basic equations

We study the potential flow of two-dimensional ideal incompressible fluid. The fluid
occupies a half-infinite domain

−∞ < y < η(x, t), −∞ < x <∞.

The flow is potential, so that v = ∇Φ, Φ|y=η(x,t) = ψ(x, t). Boundary conditions
on the surface are standard. It is known that the shape of surface η(x, t) and the
potential on the surface ψ(x, t) form a pair of canonically conjugated variables obeying
the Hamiltonian equations:

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −

δH

δη
.

Here H is Hamiltonian function, the total energy of the fluid.
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Hamiltonian

✲

✻

x

y

η(x, t) ψ(x, t)

♥z

H =
1

2

∫

gη2+ψk̂ψdx−
1

2

∫

{(k̂ψ)2− (ψx)
2}ηdx+

+
1

2

∫

{ψxxη
2k̂ψ+ψk̂(ηk̂(ηk̂ψ))}dx+ . . .

k̂ =

√

−
∂2

∂x2
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Normal variables ak

ηk =

√

ωk

2g
(ak + a∗

−k) ψk = −i

√

g

2ωk

(ak − a∗
−k) ωk =

√

gk

H = H2 +H3 +H4 + . . .

H2 =

∫

ωk|ak|
2

H3 = H3(ak, a
∗

k)− third power

H4 = H4(ak, a
∗

k)− fourth power

ak satisfies the equation
∂ak
∂t

+ i
δH

δa∗k
= 0
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ak ⇒ bk
Canonical transformation excludes cubic terms. After transformation

bk satisfies the equation:

iḃk = ωkbk +

∫

T
k2k3
kk1

b∗k1bk2bk3δk+k1−k2−k3dk1dk2dk3

Miracle #1

T
kk1
k2k3

=θ(kk1k2k3)W
kk1
k2k3

In other words if k1, k2, k3 > 0, k < 0,⇒ T k2k3
kk1

≡ 0!
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Let all ki > 0. Then

T
kk1
k2k3

=
(kk1k2k3)

1
4

4π

[

(kk1)
1
2+(k2k3)

1
2

]

min(k, k1, k2, k3)θ(kk1k2k3)

One more canonical transformation makes possible to replace

T
k2k3
kk1

⇒ T̃ k2k3
kk1

T̃ k2k3
kk1

=
(kk1k2k3)

1
2

2π
min(k, k1, k2, k3)θ(kk1k2k3).

or
T̃ k2k3
kk1

= θ(kk1k2k3)
(kk1k2k3)

1
2

8π
(k + k1 + k2 + k3−

− |k − k2| − |k − k3| − |k1 − k2| − |k1 − k3|)
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ck = k
1
2θkbk

∂c

∂t
+ iω̂c− iP̂+ ∂

∂x

(

|c|2
∂c

∂x

)

= P̂+ ∂

∂x
(Uc)

one can recognize two terms in the equation:

• nonlinear waves: iω̂c− iP̂+ ∂
∂x

(

|c|2∂c
∂x

)

⇒

EXTREAME WAVES

• advection term: P̂+ ∂
∂x
(Uc) ⇒ WAVE pre-BREAKING

U = K̂|c|2 - advection velocity. |c|2 - potential. P̂+
k = θ(k).

Russian-French Workshop ”Mathematical hydrodynamics”, August 22-27, 2016, Novosibirsk, Russia 6



Breather is the localized solution of the following type:

c(x, t) = C(x− V t)ei(k0x−ω0t) or ck = ei(Ω+V k)tφk

where φk satisfies the equation:

(Ω + V k − ωk)φk =
1

2

∫

T k2k3
kk1

φ∗k1φk2φk3δk+k1−k2−k3dk1dk2dk3

It can be found by Petviashvili method

φn+1
k =

NLn
k

Mk

[

< φn ·NL(φn) >

φn ·Mφn

]γ

, Mk = Ω+ V k − ωk,

NL(φn) = −P+ ∂

∂x

(

|φn|2
∂φn

∂x

)

+ iP+ ∂

∂x

(

k̂
(

|φn|2
)

φn
)
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Giant Breather
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Figure 1: |c(x)| (red curve)
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Figure 2: Spectrum |c(k)|)
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Breathers collision
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Figure 3: Collision of two breathers. Free surface for different times
t = 0, 107, 214, 321, 428
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Modulation Instability of Stokes Wave → Freak Wave
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Figure 4: Formation of the freak wave. Free surface for different times
t = 0, 615, 635, 655
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Wave breaking
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Euler equation in conformal variables

These equations minimize the action

S =

∫

Ldt, L =

∫

∞

−∞

ψηtdx−H.

Starting from this point let us forget for a while about hydrodynamics, and consider
more general case. Namely, let’s think of H as some arbitrary functional of ψ and η.

Let z(w, t) be the conformal mapping of the domain, bounded by the curve η(x, t)
to the lower half-plane of w

w = u+ iv, −∞ < u <∞, −∞ < v < 0
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We introduce two functions analytic in the lower half-plane

z = x+ iy = z(w)

Φ = Ψ + iĤΨ

These complex-valued functions are analytic in the lower half-plane v ≤ 0.

Equations for ”implicit” equations of motion can be rewritten as follows:

ztz̄u − z̄tzu = −Φu + Φ̄u

Ψtzu −Ψuzt +
1

2

Φ̄2
u

z̄u
= 0

Ψ =
1

2
(Φ + Φ̄)
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Self-similar compressed fluid

η ≡ 0

Φ(x, y, t) =
1

2

1

t− t0
(x2 − y2)

P = −
y2

(t− t0)2
P = 0, y = 0

In conformal variables

z0 = tu Φ0 =
1

2
tu2

Then equations for the shape of self-similar solutions are satisfied. Let us study
perturbation of this solution

z → ut+ z Φ →
1

2
u2t+Φ
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Equations for the self-similar solutions read

tzt − uzu +Φu = P−(z̄tzu − ztz̄u)

P−

{

u

2
(uzu − Φu) + t(

1

2
Φt − uzt) + Ψtzu −Ψuzt

}

= 0

Miracle # 2

These solutions are satisfied if

z = α(u) Φ = Φ0(u) = ∂−1uα(u)

α(u) is an arbitrary! function analytic in the lower half-plane

α(w) → 0 Imw → −∞
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Let

α =
A

u+ ia
A, a− real constants, u > 0

Shape of the surface is presented in the parametric form

x = u+
Aut

u2 + a2t2
y = −

aAt2

u2 + a2t2

∂x

∂u
→ 1 at t→ ±∞

Bifurcation condition ∂z/∂u = 0 leads to expression

u2 =
1

2
A t

(

1±

√

1−
8a2

A2

)

− a2t2
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If

a2 >
1

8
A2

the solution is one-valued.

If

a2 <
1

8
A2

ie, the pole is close to the real axis, we obtain invertible:

1. Formation of bubbles (if A > 0)

2. Formation of droplets (if A < 0)

The face of surface is symmetric
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Miracle # 3

Let us look for solution of the above equations in the form

z = α(u) +
1

t
z1(u) +

1

t2
z2(u) + · · ·

Φ = Φ0(u) +
1

t
Φ1(u) +

1

t2
Φ2(u) + · · ·

Now again z1(u) is arbitrary function analytic in the lower half-plane

Φ1(u) = u z1(u)

u z2(u) = −P− (z̄1αu − z1 ᾱu)

The system is integrable!
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Dyachenko equations

There is another form of complex equations. Following Dyachenko, we introduce
new variables:

R =
1

z′
, V = i

∂Φ

∂z
= iRΦ′.

For the simplest case of absence of gravity the Dyachenko equations read

Rt = i(UR′ −RU ′)

Vt = i(UV ′ −RB′)

In R and V variables:

U = P̂−(RV̄ + R̄V ), B = P̂−(V V̄ )
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In the presence of gravity the first equation is not changed.

The second one takes the form:

Vt = i
(

UV ′ −RP̂−(V V̄ )′ + g(R− 1)
)
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Poles and cuts

Functions R, V, U,B are analytic on Imw < 0. Moreover, R 6= 0, Jmw < 0.

However these functions may have singularities on upper half-plane. Function R
can have zeros at Jmw > 0.

The following facts are important:

1. Zeroes of R (denote them λn) are persistent: R(λn) = 0. They cannot appear
or disappear and move obeying the law

λ̇n = i Un, Un = U |w=λn

2. Cuts are persistent if they are of root square type.
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Motion constants

We see that approximation of narrow cut leads to an integrable system. Is the whole
system integrable? The Dyachenko equations can be rewritten in the differential form

∂

∂t

1

R
= i

∂

∂w

(

U

R

)

,
∂

∂t

V

R
= i

∂

∂w

(

UV

R
−B

)

+ g

(

1−
1

R

)

Let I =
∫

∞

−∞

1
R
du, J =

∫

∞

−∞

V
R
du. Then

dI

dt
= 0,

dJ

dt
= −gI,

and I = const, J = J0 − gIt. These equalities are conservation laws of mass and
horizontal component of momentum. However, these relations could be generalized.
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Let Γ be a closed contour and all functions be analytic in some neighborhood of
this contour,

I =

∮

Γ

1

R
dw, J =

∮

Γ

V

R
dw,

and I, J0 be motion constants.

If in a vicinity of λn, R and V can be presented as follow

R = an(w − λn) + · · · V = bn + b1(w − λn) + · · ·

then

dan
dt

= 0 an = const

dbn
dt

= −gan bn = b0n − gant

Russian-French Workshop ”Mathematical hydrodynamics”, August 22-27, 2016, Novosibirsk, Russia 23



In other words, an, b0n are motion constants. We conclude that each zero of R
generates two complex (four real) motion constants.

All motion integrals are in involution. They form the Abelian Lie algebra. The
question about the completeness of the set of integrals is open yet.

All functions R,V, U,B can be analytically continued to a certain Riemann surface,
and each list of this surface generates additional motion constants.

This fact leads to the plausible conjecture that the whole set of motion constants
is complete, hence the system is completely integrable.

The fact of integrability of the ”compressed fluid” supports this conjecture. But
this is just a conjecture yet. Anyway existence of extra motion constants is a Miracle

# 4.
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”Eternal” breather as a solution of exact equations

The compact equations have a solution in a form of breather propagating without
radiation. Do exact Euler equation have a similar solution - ”the eternal breather”?
This is the open question. Theoretically speaking, any brether must loose energy due
to radiation in the backward direction. If this radiation is absent, this is

Miracle # 5

Our numerical experiment supports existence of ”the eternal breather”.
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Breather in the fully nonlinear (exact) equations (steepness).
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Self-similar solutions

Equations
ztz̄u − z̄tzu = −Φu + Φ̄u

Ψtzu −Ψuzt +
1

2

Φ̄2
u

z̄u
= 0

admit the following substitution

z = tαz0(u)

Φ = t2α−1Φ0(u)

Then, the self-similar solutions are

η = tαF (
x

tα
), t→ t− t0
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In the presence of gravity only one solution is possible, α = 2

η = g(t0 − t)2F (
x

g(t0 − t)2
)

This is formation of wedge with α = 1200 (another talk). If g = 0, all α are possible

α(z0z̄0u) = Φ̄0u − Φ0u

(2α− 1)Ψ0z0u − αΨ0uz +
1

2

Φ̄2
u

z̄u

Ψ0 =
1

2
(Φ0 + Φ̄0) = ReΦ0

If α = −3 parabolic Dirichlet jet

If α = −1 compressed fluid Other cases are not explored

Self-similar solutions must be found numerically
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