
Effective field theory methods for classical and
quantum gravity

Pierre Vanhove

Ginzburg Conference, May 29 2017, Moscou
based on the works 1309.0804, 1410.4148 and 1410.7590, 1609.07477 1704.01624

N.E.J. Bjerrum-Bohr, John Donoghue, Barry Holstein, Ludovic Planté
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A new window on gravitation

The detection of GW150914 by LIGO has open a new window on the
gravitational physics of our universe
I For the first time detection and test of GR in the strong gravity coupling

regime
I For the first time dynamics of Black hole (not just static object curving

space-time)
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A new window on gravitation

[Yunes, Yagi, Pretorius] have listed theoretical implications of
GW150914 in particular

GW150914 constrains a number of theoretical
mechanisms that modify GW propagation
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Effective gravity models

There are various models of modified gravity motivated by the dark energy
issue

For instance models involve with higher derivative and non-compact extra
dimensions
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Treated as an effective field theory one can one constrain these models using
scattering amplitude?

Embedding some model in string theory provides strong constraints
[Antoniadis, Minasian, Vanhove] but one may want to have a purely
QFT test of the various models
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Quantum gravity as an effective field theory

[Donoghue] has explained that one can evaluate some long-range infra-red
contributions in any quantum gravity theory and obtain reliable answers

Some physical properties of quantum gravity are universal being independent
of the UV completion

The one-loop infra-red contributions depend only the structure the low-energy
fields and the classical background
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Physics of the effective field theory approach

Using the effective field theory approach to gravity one can compute
I the classical (post-Newtonian) and quantum contributions to the

gravitational potential between masses
I Quantum corrections to the bending angle of massless particle by a

massive classical object
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Classical physics from loops

We will be considering the pure gravitational interaction between massive and
massless matter of various spin

LEH ∼

∫
d4x

(
−

2
κ2 R+ κhµνTµνmatter

)
,

We will be considering perturbative computations κ2 = 32πGN

M =
1
 h
Mtree +  h0M1−loop + · · · .
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Double expansion : classical and quantum parameters

We have two scales in the problem:

I The Schwarzschild radius

rS =
2GNM

c2

I The Compton wave-length

o =
 h

Mc

I Dual with respect to the Planck length

rSλ =
2GN  h

c3 = 2 `2P
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Double expansion : classical and quantum contributions

Starting from the PPN expansion

Vclass(r) =
∑
m>0

vm,0

(rS

r

)m

If λ =  h/(Mc) is the characteristic length of the quantum fluctuations we
have at first order
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Double expansion : classical and quantum contributions

Since
rSλ =

2GN  h

c3 = 2 `2P

We have

V(r ± λ) '
∑

m

(
vm,0

rm
S

rm + vm,1
rm−1

S `2P
rm+1

)
This motivates the appearance of the first quantum corrections to the
gravitational potential We will use scattering amplitudes to evaluate both the
classical and the quantum part of the long range potential.
The Schwarzschild radius will arise from loop amplitude because

rS =
2GN`

2
P

c3λ
=
κ2

2λ
κ = coupling constant
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

Putting back the factors of  h and c the Klein-Gordon equation reads

(�−
m2c2

 h2︸  ︷︷  ︸
o−2

)φ = 0
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

The triangle contribution with a massive leg p2
1 = p2

2 = m2 reads∫
d4`
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

The triangle contribution with a massive leg p2
1 = p2

2 = m2 reads

κ2

2λ
√

s
=

rS√
s

Fourier transformed with respect to the non-relativistic momentum transfert
|~q| =

√
s leads to rS/r corrections
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Classical physics from loops

The 1/ h term at one-loop contributes to the same order as the classical tree
term [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Donoghue, Holstein; Bjerrum-Bohr, Donoghue, Vanhove]
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For the scattering between a massive matter of mass m and massless matter of
energy E one gets

M ∼
1
 h

(
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(mE)2

~q2 + G2
N

m3E2
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)
+  hG2

NO
(

log(~q2), log2(~q2)
)

.

The mechanisms generalizes to higher loop-order amplitudes to leads to the
higher order post-Newtonian corrections
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]
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I C is the classical correction and Q and Q ′ are quantum corrections

I Q in the potential V(r) is ambiguous but V(r) is not observable

The coefficients of 1/
√
−q2 and log(−q2) in the amplitude are

unambiguously defined and depend on the long range physics
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
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I Q ′ is the short distance UV divergences of quantum gravity: need to add
the R2 term [’t Hooft-Veltman]

S =

∫
d4x|− g|

1
2

[
2

32πGN
R+ c1R

2 + c2RµνRµν + · · ·
]

Pierre Vanhove (IPhT) Quantum Gravity & equivalence principle 29/05/2017 11 / 21



Loop amplitude

Since we are only interested in the long range graviton exchange, it is enough
to just evaluate the gravitons cut

hµν

hµν
m1

m2

we need to know the gravitational Compton amplitudes on a particle of spin s
with mass m

Xs,m + graviton→ Xs,m + graviton
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Gravitational compton scattering
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We express the gravity Compton scattering as a product of two Yang-Mills
amplitudes [Kawai, Lewellen, Tye], [Bern, Carrasco, Johansson]

M(Xsg→ Xsg) = GN × (p1 · k1)As(1234)Ã0(1324)

As(1234) is the color ordered amplitudes scattering a gluon off a massive spin
s state Xsg→ Xsg
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Gravitational compton scattering
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We express the gravity Compton scattering as a product of two QED Compton
amplitudes using the monodromy relations [Bjerrum-Bohr, Donoghue, Vanhove]

(k1 · k2)As(1234) = (p1 · k2)As(1324)

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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Gravitational compton scattering
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The gravity Compton scattering is expressed as the square of QED (abelian)
Compton amplitudes [Bjerrum-Bohr, Donoghue, Vanhove]

++=

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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The one-loop amplitude between massive particles

hµν

hµν
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We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

The cut contributions
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

I In the non-relativistic limit the amplitude decomposes

M1−loop ' G2
N (m1m2)

4(I4(s, t)+ I4(s, u))+G2
N(m1m2)

3s(I4(s, t)− I4(s, u))

+ G2
N(m1m2)

2 (I3(s, m1) + I3(s, m2))

+ G2
N(m1m2)

2I2(s)
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The one-loop amplitude between massive particles

hµν

hµν
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We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

The result is given by
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Universality of the result

In the case of scattering of particles of different spin S1 and S2 the
non-relativistic potential reads

M1−loop(q2) ' G2
N(m1m2)

2

(
C
(m1 + m2)√

−q2
+ Q h log(−q2)

)
C and Q have a spin-independent and a spin-orbit contribution

C, Q = C, QS−I 〈S1|S1〉 〈S2|S2〉+ C, QS−O
1,2 〈S1|S1〉~S2 ·

~p3 × p4

m2
+ (1↔ 2)

This expression is generic for all type of matter

the numerical coefficients are the same for all matter type
The universality of the coefficients with respect to the spin of the external
states is a consequence of

I The reduction to the product of QED amplitudes
I the low-energy theorems of [Low, Gell-Mann, Goldberger] and [Weinberg]

In the non-relativistic limit the QED Compton amplitudes reads

A(Xsγ→ Xsγ) ' 〈S|S〉A(X0γ→ X0γ) +
~S · Â

m
The KLT formula gives that the tree gravity amplitude reads

M(Xsg→ Xsg) ' 〈S|S〉M(X0g→ X0g) +
~S · M̂

m

The low-energy theorem imply that Â and M̂ are independent of the spin s
I In the cut this leads to universality of the result [Bjerrum-Bohr, Donoghue, Vanhove]

I This is totally what one expects from the equivalence principle and the
multipole expansion of the gravitational interaction between massive
states

I The long range quantum correction involves low-energy gravity degrees
of freedom and is independent of any microscopic high-energy model
dependent contributions
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The one-loop amplitude for massless particles

ℓ1

ℓ2

p1

p2
p3

p4

We consider the gravitational one-loop amplitude between a massless particle
of spin S and a massive scalar

κ−4 iM1−loop
S = boS(s, t) I4(s, t) + boS(s, u) I4(s, u)

+ tS
12(s) I3(s, 0) + tS

34(s) I3(s, M2)
+ buS(s, 0) I2(s, 0) .

The coefficients satisfy interesting BCJ relations

boS(s, t)
t − M2 +

boS(s, u)
u − M2 = tS

12(s)
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The amplitude

The low-energy approximation

iMtree+1−loop
S =

N(S)

 h

[
κ2 (2Mω)2

16q2

+  h
κ4

16

(
4(Mω)4(I4(t, s) + I4(t, u)) + 3(Mω)2sI3(t)

−
15
4
(M2ω)2I3(t, M) + buS(Mω)2I2(t)

)]
For photon scattering only the amplitudes with helicity (++) and (−−) are
non-vanishing.

Therefore there is no birefringence effects to contrary to case with electrons
loops contributing to the interaction [Drummond, Hathrell;Berends,

Gastmans]
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The amplitude

iMtree+1−loop
S ' N(S)

 h

(Mω)2

4

×
[κ2

q2 + κ4 15
512

M√
−q2

+  hκ4 15
512π2 log

(
−q2

M2

)
−  hκ4 buS

(8π)2 log
(
−q2
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)
+  hκ4 3

128π2 log2
(
−q2
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)
+ κ4 Mω

8π
i
s

log
(
−q2
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)]
The last line contains the infrared divergences

p1

p2

` ∝
∫

0

d4−2ε`

`2 2` · p1 2` · p2
∼
(t/µ2)−ε

ε2 t
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The bending angle via Eikonal approximation

iM(b) ' 2(s − M2)
[
ei(χ1+χ2) − 1

]
χ1(b) is the Fourier transform of the one graviton (tree-level) exchange

χ1(b) =
1

2M2E

∫
d2q
(2π)2 e−iq·bM

(1)
S (q) ' 4GNME

[
1

d − 2
− log(b/2) − γE

]

χ2(b) is the Fourier transform of the two gravitons (one-loop) exchange

χ2(b) =
1

2M2E

∫
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(2π)2 e−iq·b M
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X (q)

' −G2
NM2E

15π
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8buS + 9 − 48 log

b
2b0

)
.
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The bending angle

The bending angle θS ' − 1
E
∂
∂b (χ1(b) + χ2(b)) is

θS '
4GM

b
+

15
4

G2M2π

b2 +
8buS + 9 − 48 log b

2b0

π

G2 hM
b3 .

I The classical contribution including the 1rst Post-Newtonian correction
is correctly reproduced

I The quantum corrections are new: not only from a quantum corrected
metric
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The bending angle

The bending angle θS ' − 1
E
∂
∂b (χ1(b) + χ2(b)) is

θS '
4GM

b
+

15
4

G2M2π

b2 +
8buS + 9 − 48 log b

2b0

π

G2 hM
b3 .

The difference between the bending angle for a massless photon and massless
scalar

θγ − θϕ =
8(buγ − buϕ)

π

G2 hM
b3 .
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Outlook

Recent progresses from string theory technics, on-shell unitarity, double-copy
formalism simplifies a lot perturbative gravity amplitudes computations

I The amplitudes relations discovered in the context of massless
supergravity theories extend to the pure gravity case with massive matter

I The use of quantum gravity as an effective field theory allows to
compute universal contributions from the long-range corrections

I We can reproduce the classical GR post-Newtonian corrections to the
potential and understand some generic properties using low-energy
theorems: hope to be able to simplify the computation of PPN
corrections.
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