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AdSd+1/CFTd
free boundary CFTd
(i) “vectorial”: Φ in fundamental of U(N) or O(N)

(ii) “adjoint”: Φ in adjoint of U(N) or O(N)

vectorial: bilinear “single-trace” operators Φ∗i ∂...∂Φi
adjoint: multilinear single-trace operators tr(Φ∂...∂Φ∂...∂Φ...∂Φ)

any d = 3, 4, ... and any free conformal field Φ is ok

• adjoint AdS/CFT: e.g. λ = g2
YMN = 0 limit of AdS5/CFT4

should be related to tensionless limit of string theory in AdS

• dual higher spin theory in AdS:
contains infinite set of (massless and massive) HS fields in AdS
dual to primary operators in boundary CFT



Higher representations of internal symmetry ?
• CFT field belonging e.g. to 3-fundamental (”3-plet”)
general or symmetric or antisymmetric 3-index tensor
•many more irreducible singlet operators:
instead of 1d (”circle”) single trace Φij∂...∂Φjk∂...∂Φkn...∂Φni

”spatial” contractions, e.g. ”tetrahedron” or ”pyramid” like
Φijk∂...∂Φkmn∂...∂Φnjp...∂Φpmi, etc

[tensor theories, ”triangulation” of 3-spaces]
• spectrum of ”single-trace” operators with more than two fields
dual to massive fields in AdS – more intricate than in adjoint
”tensionless membrane” interpretation?
• coefficient in front of dual AdS field theory action will be N3

(to match large N scaling of 3-point correlation functions)
cf. AdS7 × S7 for M5-brane



Finite T singlet partition function Z:
encodes spectrum of ”single-trace” ops in small T expansion
• vector case: singlet large N Z for U(N) [Shenker, Yin 11]
and O(N) [Giombi, Klebanov, AT 14; Jevicki et al 14]
matched to massless HS partition functions in AdS
• adjoint case: [Sundborg 99; Polyakov 01; Aharony et al 03]
matching Z to AdS partition function [Bae, Joung, Lal 16]
• phase transition at larger Tc ∼ Nγ � 1 in vector
and T ∼ 1 in adjoint case
dual AdS interpretation (finite-size black hole) in adjoint case

• aim: compute singlet Z for free CFT in a 3-plet rep;
analyse its small T expansion and match to direct operator count;
large N matrix model→ phase transition at T = a

log N → 0



Heuristic motivation: (2,0) tensor multiplet as M5-brane theory
• single M5-brane: 11d sugra solution –
free 6d CFT – (2, 0) tensor multiplet as w-volume theory:
selfdual Hµνλ = 3∂[µBνλ], 5 φr and 2 Weyl ψa

• analogy with multiple D-branes connected by open strings
[low energy – SYM – N2 vector multiplets at weak coupling
matching leading N2 scaling in dual supergravity]
need N3 (2,0) multiplets to match N3 scaling in 11d sugra
• conjecture: N3 scaling of observables of multiple M5-branes
explained in terms of M2-branes ending on 3 M5-branes:
triple M5-brane connections by ”pants-like” membrane surfaces
provide dominant contribution [Klebanov, AT 96]
leading to 3-index world volume fields
• 6d superconformal theory of multiple M5-branes?



(2, 0) tensor multiplets in 3-tensor rep of SU(N) or SO(N)

[Bastianelli, Frolov, AT 99]
(Bijk

µν, φ
ijk
r , ψ

ijk
a ), i, j, k = 1, 2, ..., N: dim ∝ N3

• alternatively, interacting (2,0) tensor multiplets as low-E limit
of tensionless 6d string: closed strings carrying 3-plet indices
from virtual membranes connecting 3 parallel M5-branes

[cf. Hijk
µνλ = dBijk

µν and Fij
µν in open string (adjoint) case]

•many open questions: interacting L = Hijk
µνλ + ... – conf inv?

only at quantum level – interacting fixed point?
• existence of well-defined large N limit ?
analogy with tensor models [Klebanov, Tarnapolsky 16]
connection with d = 1 SYK model [Gurau; Witten 16]
3-tensor models with distinguishable indices: large N limit
described by iterated ”melonic” graphs [Gurau]



•multiple M5-brane theory should admit large N expansion
– suggested by 11d M-theory corrections to its anomalies
[Harvey et al 98; AT 00; Beccaria, AT 15]
and its free energy [Gubser, Klebanov, AT 98]

• first consider just free 3-plet tensor multiplet CFT
regardless its connection to M5-brane – should have AdS7 dual
•More generally: study 3-plet version of AdS/CFT
– for any free CFTd in 3-plet representation

• Aim: study singlet large N partition function
in free scalar 3-plet CFT (scalar case is general enough)
• describe spectrum of ”single-trace” operators in 3-plet case,
growth with N, possible phase transitions, etc.
• compare to vector and adjoint rep cases



Partition function with singlet constraint
• free complex scalar CFT: L =

∫
ddx ∂mΦ∗ijk∂mΦijk

• singlet constraint may be implemented by coupling
to flat U(N) connection and integrating over its
non-trivial holonomy on S1 – over constant U ∈ U(N)

• for rep R singlet part function Z(x), x = e−β given by
matrix U integral with ”action” depending on χR(U)

and one-particle partition function zΦ(x)
• singlet partition function of CFT on R× Sd−1

Z = ∑
singlets

xE, x = e−β , β = 1/T

E of states on Sd−1 = dimensions ∆ of operators in Rd



• single-particle partition function

zΦ(x) = ∑
i

xEi

counts states created by Φ and its descendants mod e.o.m.
– character of corresponding rep of conf group
• for scalar, Weyl fermion, 4d vector, 6d self-dual tensor

zS,d(x) =
x

d
2−1(1 + x)
(1− x)d−1 , zF,d(x) =

2
d
2 x

d−1
2

(1− x)d−1

zV,4(x) =
6 x2 − 2 x3

(1− x)3 , zT,6(x) =
10 x3 − 5 x4 + x5

(1− x)5

• for single boson Φ in a real rep R of U(N) (e.g. R = N ⊕ N)



Z = ∑
n1≥0

xn1 E1 ∑
n2≥0

xn2 E2 ...# singlets symn1(R)⊗ symn2(R)...

• singlet constraint: by integrating over the symmetry group

Z =
∫

dU ∏
i

∑
ni≥0

xni Ei χsymni (Ri)
(U)

• using explicit form of χ of symn(R) [Skagerstam 83]

Z =
∫

dU exp
{ ∞

∑
m=1

1
m

zΦ(xm) χR(Um)
}

, zΦ(x) = ∑
i

xEi

in boson + fermion case z(xm) → zB(xm) + (−1)m+1zF(xm)



• Examples of χR:

vector : N ⊕ N χR = tr(U) + tr(U†)

adjoint : χR = tr(U) tr(U†)

3-plet : N⊗3 ⊕ N⊗3
χR = [tr(U)]3 + [tr(U†)]3

p-plet: product of p fundamentals: R = N⊗p ⊕ N⊗p

χN⊗p⊕N⊗p(U) =
[
tr(U)

]p
+
[
tr(U†)

]p

(anti) symmetric product

χ(N⊗N⊗N)(anti)sym
(U) = 1

6

[
χN(U)

]3± 1
2 χN(U) χN(U2)+ 1

3 χN(U3)



Derivation from scalar partition function on S1
β × Sd−1:

singlet projection implemented by coupling Φ to a Aµ = U−1∂µU
constant part of A0 cannot be gauged away
e.g. in vector case: complex U(N) scalars Φi (t ∈ (0, β))

∂2
t → (∂t + A0)

2, A0 = U−1∂0U, U(t) = diag(ei α1
β t, ..., ei αN

β t
)

Z =
∫ N

∏
k=1

dαk e−F̃(α,β) , F̃ = −
N

∑
i 6=j

ln | sin
αi−αj

2 |+ F̄(α, β)

F̄ = ln det
[
− (∂t + A0)

2 +∆
Sd−1

]
=

N

∑
i=1

∞

∑
k,n

dn ln
[
(2πk+αi)

2

β2 + ω2
n

]

F̄ = −
∞

∑
m=1

1
m bm(α) zΦ(mβ) , bm(α) = χR(Um(β)) = 2

N

∑
i=1

cos mαi



N = ∞ limit of low T expansion of singlet Z
• expand U integral in powers of x = e−β, then take N → ∞
• vector and adjoint: low T, N = ∞ expansion is convergent
• 3-plet case: expansion is only asymptotic (xc = 0)
• reason – rapid growth of # of singlets with dimension:
phase transition at small Tc ∼ (log N)−1 → 0
i.e. low T phase effectively shrinks to T = 0 for N = ∞

• N = ∞ limit: counting of singlet states simplifies
Z expressed in terms of the ”single-trace” Zs.t.(x)=
counting only fully-connected (indecomp.) contractions

log Z(x) ≡
∞

∑
m=1

1
m

Zs.t.(xm)



Vector and adjoint representation cases
• vector case: singlets in symn(N ⊕ N) products of bilinears
e.g. bilinear singlets ∑ss′ css′ ∑i ∂sΦi∂

s′Φi.
”single-trace” partition function is square of single-particle one

Zvec
s.t. (x) =

[
zΦ(x)

]2
all singlets – N = ∞ singlet partition function

log Zvec =
∞

∑
m=1

1
m
[
zΦ(xm)

]2
• adjoint case: singlets as products of single-trace operators
Z for single-trace ops from Polya enumeration theorem
[Sundborg 99; Polyakov 01]

Zadj
s.t. = −

∞

∑
m=1

ϕ(m)

m
log
[
1− zΦ(xm)

]



ϕ(m) – Euler’s totient function counting positive integers
up to a given integer m that are relatively prime to m
• N = ∞ singlet partition function – all multi-trace singlets

log Zadj =
∞

∑
m=1

1
m

Zadj
s.t. (xm) = −

∞

∑
m=1

log
[
1− zΦ(xm)

]
AdS/CFT perspective:
• vector case: bilinear primaries – massless HS in AdS

total partition function matches 1-loop AdS partition function
[Shenker, Yin 11; Giombi, Klebanov, AT 14; Beccaria, AT 14]
• adjoint case: single traces – towers of massless and massive

HS in AdS; on group-theoretic basis expect to match
multi-particle Z with its AdS counterpart [Bae, Joung, Lal 16]



Low temperature expansion of Z and counting of operators
expansion of Z in x = e−β encodes counting of singlets

Z =
∫

dU exp
{ ∞

∑
m=1

1
m

zΦ(xm) χR(Um)
}

, zΦ(x) = ∑
i

xEi

I(a, b) =
∫

dU ∏`≥1(tr U`)a` (tr U`)b` →N→∞ ∏`≥1 `
a` a`! δa`,b`

• vector case: if Φ is 4d scalar with zΦ(x) = zS,4(x) = x((1+x)
(1−x)3

Zvec
S,4 = 1 + x2 + 8 x3 + 35 x4 + 112 x5 + 330 x6 + 944 x7 + . . .

N → ∞ and x → 0 commute; ∞ conv. radius: Tc ∼ Nγ → ∞
• adjoint case: more operators at higher dimensions

Zadj
S,4 = 1+ x+ 6 x2 + 20 x3 + 75 x4 + 252 x5 + 914 x6 + 3160 x7 + . . .

finite radius of convergence: Tc ∼ N0 ∼ 1



Comparison to direct counting of operators:
(i) vector case: “single-trace” partition function

4d scalar zS,4(x) = x(1+x)
(1−x)3 , [zS,4(x)]2 = x2 + 8 x3 + . . . :

dim 2: one operator ϕi ϕi
dim 4: 4 + 4 operators ϕi ∂µ ϕi and ∂µ ϕi ϕi

(ii) adjoint case: single-trace Zadj
s.t. = x + 5 x2 + . . . :

dim 1: one operator tr(ϕ)

dim 2: 1 + 4 = 5 operators tr(ϕ2) and ∂µ tr(ϕ)

(iii) 3-plet representation:
large N limit of small x expansion of Z for 4d scalar

Z3−plet
S,4 = 1 + 6 x2 + 48 x3 + 396 x4 + 3504 x5 + 35580 x6

+ 381216 x7 + 4408956 x8 + 53647632 x9 + 689785308 x10 + . . .



symmetric (+) or antisymmetric (−) 3-index reps

Z3−plet+

S,4 = 1+ x2 + 8 x3 + 36 x4 + 120 x5 + 404 x6 + 1368 x7 + . . .

Z3−plet−

S,4 = 1+ x2 + 8 x3 + 36 x4 + 120 x5 + 403 x6 + 1360 x7 + . . .

fewer operators as some contractions become equivalent

compare to direct counting of operators:
• dim 2: singlets built out of scalar Φ = (ϕijk)

(ϕ ϕ) = ϕijk ϕi′ j′k′ , i′ j′k′ = permutation of ijk: 3! = 6 different

• dim 3: singlets (ϕ ∂µ ϕ), (∂µ ϕ ϕ), 2× 4× 6 = 48 operators
• dim 4: bilinears: (ϕ ∂µ∂ν ϕ), (∂µ∂ν ϕ ϕ), (∂µ ϕ∂ν ϕ)

ignoring ∼ ∂µ∂µ ϕ = 0 (9× 2 + 4× 4)× 6 = 204 operators
quartic: (i) reducible contraction (ϕϕ)(ϕϕ) : 1

2 × 6× 7 = 21



(ii) irreducible ”single-trace” (ϕϕϕϕ), ϕijk ϕijl = Xkl

32 × 2 = 18 X, contracting 1
2 × 18× 19 = 171

dim 4 singlets: 204+ 21+ 171 = 396 in agreement with x4 term
• similar results in 6d, for fields of tensor multiplet, etc.

Comparing 3-plet case to adjoint case:
• number of singlets grows much faster with dim of operator
implies non-convergence of small x expansion of Z
• analog of ”Hagedorn” transition in adjoint case
happens at much lower Tc ∼ (log N)−1 → 0 at N → ∞



Closed expression for low T expansion of Z at N → ∞

Z =
∞

∏
m=1

∞

∑
k=0

1
k!

(zΦ(xm)

m

)k ∫
dU
[
χR(Um)

]k

for p-plet N⊗p rep of U(N): χR(U) =
[
tr(U)

]p
+
[
tr(U†)

]p

Zp-plet =
∞

∏
m=1

Fp
(
mp−2 [zΦ(xm)]2

)
Fp(y) ≡ ∑∞

k=0 bk yk , bk =
(p k)!
(k!)2 , p = 1, 2, 3, ...

e.g. for p = 1 and p = 2: F1(y) = ey , F2(y) = 1√
1−4y

log Z1-plet = ∑∞
m=1

1
m
[
zΦ(xm)

]2 ,

log Z2-plet = − 1
2 ∑m log

(
1− 4

[
zΦ(xm)

]2)



log Zadj = −
∞

∑
m=1

log
[
1− zΦ(xm)

]
• series Fp no longer converges starting with p = 3
for p ≥ 3 get only formal generating function for the spectrum
• p = 3: ”resum” the series by replacing (3 k)! in bk by

∫ ∞
0 dt e−t t3 k

F3(y) → F̃3(y) = 1
6

√
π
3 y−1 e−

1
54 y−1

[
I1

6

(
1

54 y−1)+ I− 1
6

(
1
54 y−1)]

F̃3(y) has a branch cut on negative real axis, smooth for y ≥ 0
power series defining F3(y) is asymptotic expansion of F̃3(y)
alternative: Borel resummation of F3(y)

F̃B
3 (y) =

∫ ∞

0
dt e−t

∞

∑
k=0

bk
k!

(yt)k = 1
3

√
− 1

3π y−1 e−
1

54 y−1
K 1

6

(
− 1

54 y−1)



• e.g. for 4d scalar in 3-plet representation

Z3−plet
S,4 =

∞

∏
m=1

∞

∑
k=0

(3 k)!
(k!)2 mk[zΦ(xm)

]2k , zΦ(x) =
x(1 + x)
(1− x)3

• same expression for other fields with corresponding zΦ

encodes number of singlet operators built out of Φ in 3-plet rep

• similar expression for p-tensor with distinguished indices
transforming under separate U(N)’s:
singlet Z found by gauging the full [U(N)]p group;
less singlet operators but again large N limit of small x
expansion of Z becomes only asymptotic starting with p = 3



Large N partition function and phase transitions
rapid growth of # of states with dim of U(N) rep
recall adjoint case: Z diverges when zΦ(x) = 1→ xc = e−βc

log Zadj =
∞

∑
m=1

1
m

Zadj
s.t. (xm) = −

∞

∑
m=1

log
[
1− zΦ(xm)

]
well defined for β > βc, diverges Z ∼ (β− βc)−1 for β→ βc

cf. Hagedorn behaviour ρ(E) ' eβc E, Z =
∫

dE ρ(E) xE

• higher T: find dominant distribution of eigenvalues of U
N → ∞ distribution approximated by density ρ(α), α ∈ (−π, π)

ρ(α) ≥ 0,
∫ π
−π dα ρ(α) = 1.

• transition from phase where ρ > 0 on (−π, π)

to phase where ρ > 0 only on (−α0,−α0) ⊂ (−π, π)



• transition: balance measure term ∼ N2 and character term

N2 ∼ Np zΦ(xc), xc = e−1/Tc

p = 1, 2, 3, ... for the vector, adjoint, 3-plet representation, etc.

• vector case: xc → 1 as N → ∞ and since zΦ(x) x→1∼ Td−1

Tvec
c ∼ N

1
d−1 → ∞

• adjoint case: Tc is independent of N

Tadj
c ∼ 1

• 3-plet case: Tc vanishes as N → ∞, e.g. for a scalar

T3−plet
c ∼ d−2

2
1

log N
→ 0



similar for other fields, e.g. 6d tensor multiplet T3−plet
c ∼ 10

log N .

• Summary: at large N 1st order discontinuous transition
between “low T” phase with ρ > 0 everywhere on (−π, π)

and “high T” phase with ρ > 0 only for |α| ≤ α0

with α0 ∼ (N zΦ)
−1/2; transition point at (N zΦ)c =

9
16

for any T for sufficiently large N get “high T” phase

3-plet case – large N: Tc → 0: low T phase is shrinking



Large N limit in terms of eigenvalue density
integration over U in terms of eigenvalues {ei αi} (−π < αi ≤ π)

Z =
∫

dα e−S(α,x) ,
∫

dU =
N

∏
i=1

∫ π

−π
dαi ∏

i<j
sin2 αi−αj

2

S(α, x) = − 1
2 ∑

i 6=j
log sin2 αi−αj

2 +
∞

∑
m=1

cm(x)V(m α)

cm ≡ − 1
m zΦ(xm), Vvec(α) = 2 ∑N

i cos αi

Vadj(α) =
N

∑
i,j

cos(αi − αj)

V3−plet(α) = 2
N

∑
i,j,k

cos(αi + αj + αk)



integration over α→ ρ(α) periodic on α ∈ (−π, π)

S(ρ, x) = SM(ρ) + V(ρ, x) , ρ(α) =
1
N

N

∑
n=1

δ(α− αi)

SM = N2
∫

dα dα′ K(α− α′) ρ(α) ρ(α′),

K(α) = − 1
2 log(2− 2 cos α) =

∞

∑
m=1

1
m cos(mα)

Vvec = 2 N
∫

dα ρ(α)
∞

∑
m=1

cm(x) cos(m α)

Vadj = N2
∫

dα dα′ρ(α) ρ(α′)
∞

∑
m=1

cm(x) cos
[
m (α− α′)

]
V3−pl = 2N3

∫
dαdα′dα′′ρ(α)ρ(α′)ρ(α′′)

∞

∑
m=1

cm(x) cos
[
m(α+ α′+ α′′)

]



Vector and adjoint cases
expand ρ(α) in Fourier modes

ρ(α) =
1

2 π
+

1
N

[ 1
π

∞

∑
m=1

ρ+m cos(mα) +
1
π

∞

∑
m=1

ρ−m sin(mα)
]

SM =
∞

∑
m=1

1
m
[
(ρ+m)

2 + (ρ−m)
2]

Vvec = 2
∞

∑
m=1

cm ρ+m , Vadj =
∞

∑
m=1

cm
[
(ρ+m)

2 + (ρ−m)
2]

• vector case: action is stationary at

ρ+m = −m cm = zΦ(xm) , ρ−m = 0



get same expression for Z as by Gaussian integral over ρ±m

log Zvec =
∞

∑
m=1

1
m
[
zΦ(xm)

]2
• adjoint case: integrating over ρ±m

Sadj =
∞

∑
m=1

1− zΦ(xm)

m
[
(ρ+m)

2 + (ρ−m)
2]

log Zadj = −
∞

∑
m=1

log
[
1− zΦ(xm)

]
• small T: small x and zΦ(x) near ρ =const expansion is ok
• larger T: transition where ρ is zero only on (−α0, α0) ⊂ (−π, π)

vector case: transition at Tc ∼ N
1

d−1 � 1
adjoint case: critical T from condition zΦ(x) = 1 → Tc ∼ 1



• low T phase: action and Z not depend on N � 1: log Z ∼ N0

• T > Tc phase: stationary point solution for ρ(α)

due to a balance between measure and potential:
action at stationary point scales as measure term ∼ N2

i.e. in high T phase: log Z ∼ N2

3-plet case

S =
∞

∑
m=1

1
m

[
(ρ+m)

2 + (ρ−m)
2]+ V3−plet(ρ±, x)

V3−plet = −2
∞

∑
m=1

1
m zΦ(xm)

[
(ρ+m)

3 − 3 ρ+m (ρ−m)
2]

• action unbounded from below – integral over ρ±m diverges
• ρ = 1

2π =const is saddle not minimum even at low T



• ρ±m may be large – violating positivity of ρ(α)

• phase transition: ρ3 potential becomes of order ρ2 measure
condition: N2 ∼ NpzΦ(x), p = 1, 2, 3
• vector case: measure term ∼ N2 against potential ∼ NzΦ(x)
• adjoint case: both terms are of the same order ∼ N2

• 3-plet case: potential scales as N3zΦ(x) and get N2 ∼ N3zΦ(x)
• here low T phase shrinking with increasing N: Tc → 0
action and log Z scaling as N2 at stationary-point solution



Solution for eigenvalue density at large N
stationary point condition in terms of ρ(α):∫

dα′ρ(α′) cot α−α′
2

= 6N
∞

∑
m=1

zΦ(xm)
∫

dα′dα′′ρ(α′)ρ(α′′) sin
[
m(α + α′ + α′′)

]
assume ρ is symmetric and supported on (−α0, α0)∫

dα′ ρ(α′) cot α−α′
2 = 2

∞

∑
m=1

am ρ2
m sin(m α),

am = 3 N zΦ(xm), ρm =
∫

dα ρ(α) cos(m α)

ρ(α) = 1
π

√
sin2 α0

2 − sin2 α
2 ∑∞

k=1 Qk cos
[
(k− 1

2) α
]

Qk = 2 ∑∞
`=0 ak+` ρ2

k+` P`(cos α0)



•model with just one harmonic ρ1: good for large β

when x = e−β � 1 and am decreases with m
u ≡ sin2 α0

2 , α0 =
[

3
2 N zΦ(e−β)

]−1/2
+ ...

• for each temperature and N such that N zΦ(e−β) > 9
16

ρ(α) = 1
π sin2 α0

2

√
u− sin2 α

2 cos α
2

|α| < α0 ; ρ(α) = 0 , α0 < |α| ≤ π

3
2 u (2− u)2 =

[
N zΦ(e−β)

]−1

for 9
16 < N zΦ(e−β) < 2

3 2 solutions 0 < u1 < u2 < 1

• conclusions supported by numerical analysis



Summary
• singlet partition function Z of free CFT in higher reps:
for rank ≥ 3 tensors # of singlet states/operators grows
so fast with energy/dimension that small T expansion of Z
has 0 radius of convergence in N = ∞ limit

• reflected in critical T3−plet
c ∼ 1

log N → 0 at N → ∞

• for large but finite N get two phases: T < Tc and T > Tc

F = − log Z ∼ N2 in high T phase (for all reps)
• similar behaviour for singlet Z of p-fundamental rep of U(N)

and for [U(N)]p invariant p-tensors with inequivalent indices



• AdS dual of free p-plet or p-tensor CFT ?
rich spectrum: infinite towers of massive HS fields in AdS
in addition to massless HS tower (present as in vector case)
cf. ”tensionless string” spectrum in adjoint case;
”tensionless membrane” spectrum in p = 3 case?
• dual AdS action? inverse coupling ∼ N3 to match
large N correlation functions in free 3-plet CFT
• low-T phase: large N free energy F = 1-loop log Z
of all HS fields in thermal AdS ∼ N0 – to match F in CFT
• high-T phase: boundary CFT free energy F ∼ N2

(i) adjoint case (AdS action ∼ N2):
agrees with AdS black hole free energy/entropy scaling for
finite (in AdS units) size BH: Tc ∼ TH ∼ 1 [Witten 98]
(ii) vectorial case (AdS action ∼ N):
Tc ∼ Nγ → ∞: high T phase is not attainable



classical thermal object would give F ∼ N not N2

Tc ∼ TH → ∞: BH of 0 (Planck length) size [Shenker, Yin 11]
[cf. no stable AdS-Schwarzschild BH solution in HS theory]

3-plet case:
• 1-loop Z in thermal AdS for full spectrum
of AdS fields dual to singlet operators in large N limit
(i) should also be given by asymptotic series matching
low-T phase expression for boundary log Z ∼ N0

(ii) in high-T phase log Z ∼ N2

while possible contribution from classical AdS action ∼ N3

Tc ∼ TH ∼ (log N)−1 → 0:
as if size of BH is of order of AdS scale
N → ∞: no low-T phase, only high-T (opposite to vector)



• these conclusions may change in interacting 3-plet CFT ?
Examples? in 3d?
Tc may become finite at non-trivial large N fixed point ?

• (2, 0) tensor multiplet theory in 6d should have
AdS7 dual with a supergravity limit in the N → ∞ limit
admitting BHs and thus predicting N3 scaling of free energy


