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AdS,. /CFT,

free boundary CFT}

(i) “vectorial”: @ in fundamental of U(N) or O(N)
(ii) “adjoint”: @ in adjoint of U(N) or O(N)

vectorial: bilinear “single-trace” operators ®;0...09;
adjoint: multilinear single-trace operators tr(®9...090...09...0P)
any d = 3,4, ... and any free conformal field ® is ok

e adjoint AdS/CFT: e.g. A = g5,;N = 0 limit of AdS5/CFTy
should be related to tensionless limit of string theory in AdS

e dual higher spin theory in AdS:
contains infinite set of (massless and massive) HS fields in AdS
dual to primary operators in boundary CFT



Higher representations of internal symmetry ?

e CFT field belonging e.g. to 3-fundamental (”3-plet”)
general or symmetric or antisymmetric 3-index tensor
e many more irreducible singlet operators:

instead of 1d (“circle”) single trace ®79...0P/*9... 0P ...9P™

“spatial” contractions, e.g. “tetrahedron” or "pyramid” like
PIK9... 0D 9. 9DMP . 9DP™, et

[tensor theories, “triangulation” of 3-spaces]

e spectrum of “single-trace” operators with more than two fields

dual to massive fields in AdS — more intricate than in adjoint

“tensionless membrane” interpretation?

e coefficient in front of dual AdS field theory action will be N

(to match large N scaling of 3-point correlation functions)
cf. AdS; x S’ for M5-brane



Finite T singlet partition function Z:

encodes spectrum of ”single-trace” ops in small T expansion
e vector case: singlet large N Z for U(N) [Shenker, Yin 11]
and O(N) [Giombi, Klebanov, AT 14; Jevicki et al 14]
matched to massless HS partition functions in AdS

¢ adjoint case: [Sundborg 99; Polyakov 01; Aharony et al 03]
matching Z to AdS partition function [Bae, Joung, Lal 16]

e phase transition at larger T, ~ N7 > 1 in vector

and T ~ 1 in adjoint case

dual AdS interpretation (finite-size black hole) in adjoint case

e aim: compute singlet Z for free CFT in a 3-plet rep;
analyse its small T expansion and match to direct operator count;

large N matrix model — phase transition at T = g N




Heuristic motivation: (2,0) tensor multiplet as Mb-brane theory
e single M5-brane: 11d sugra solution —

free 6d CFT - (2,0) tensor multiplet as w-volume theory:
seltdual Hy,, = 39y, B, ), 5 ¢r and 2 Weyl ¢,

¢ analogy with multiple D-branes connected by open strings
[low energy — SYM — N? vector multiplets at weak coupling
matching leading N scaling in dual supergravity]

need N° (2,0) multiplets to match N°® scaling in 11d sugra

e conjecture: N° scaling of observables of multiple M5-branes
explained in terms of M2-branes ending on 3 Mb5-branes:
triple M5-brane connections by “pants-like” membrane surfaces
provide dominant contribution [Klebanov, AT 96]

leading to 3-index world volume fields

e 6d superconformal theory of multiple M5-branes?



(2,0) tensor multiplets in 3-tensor rep of SU(N) or SO(N)
[Bastianelli, Frolov, AT 99]

By, o7, v, i,j,k=1,2,..,N: dim e N3

e alternatively, interacting (2,0) tensor multiplets as low-E limit
of tensionless 6d string: closed strings carrying 3-plet indices
from virtual membranes connecting 3 parallel M5-branes

[cf. HZ:;A — dBfo and F;ZV in open string (adjoint) case]
e many open questions: interacting L = H;Zf/\ + ...—conf inv?

only at quantum level — interacting fixed point?

e existence of well-defined large N limit ?

analogy with tensor models [Klebanov, Tarnapolsky 16]
connection with d = 1 SYK model [Gurau; Witten 16]
3-tensor models with distinguishable indices: large N limit
described by iterated “melonic” graphs [Gurau]



e multiple M5-brane theory should admit large N expansion
— suggested by 11d M-theory corrections to its anomalies

[Harvey et al 98; AT 00; Beccaria, AT 15]
and its free energy [Gubser, Klebanov, AT 98]

e first consider just free 3-plet tensor multiplet CFT

regardless its connection to M5-brane — should have AdSy dual
e More generally: study 3-plet version of AdS/CFT

— for any free CFT; in 3-plet representation

e Aim: study singlet large N partition function

in free scalar 3-plet CFT (scalar case is general enough)

e describe spectrum of “single-trace” operators in 3-plet case,
growth with N, possible phase transitions, etc.

e compare to vector and adjoint rep cases



Partition function with singlet constraint
e free complex scalar CFT: L = [dx 0" D7 I D
e singlet constraint may be implemented by coupling
to flat U(N) connection and integrating over its
non-trivial holonomy on S! - over constant U € U(N)
e for rep R singlet part function Z(x), x = e~ P given by
matrix U integral with “action” depending on xg(U)
and one-particle partition function z¢ (x)
e singlet partition function of CFT on R x 5%

/ = Z xE x:e_ﬁ, B=1/T

singlets

E of states on 5%~ ! = dimensions A of operators in R



e single-particle partition function

zp(x) = Z xti

counts states created by ® and its descendants mod e.o.m.

— character of corresponding rep of cont group
e for scalar, Weyl fermion, 4d vector, 6d self-dual tensor

d_1 d d-1
x2 41+ x) 22 x 2
ZS,d(x) — (1 L x)d_l 7 ZF,d(x) — (1 . x)d_l
6x%—2x3 10x3 —5x* + x°
Z\/,4(X) — (1 — X)3 ’ ZT,6(x) — (1 _ x)5

e for single boson ® in a real rep R of U(N) (e.g. R = N & N)



Z=) " E1 Y a2 E2 . #singlets sym™ (R) ® sym™(R)...

n12>0 13 2>0

e singlet constraint: by integrating over the symmetry group

Z = [auTT ¥ ¥ xemoscry (W)

i TliZO

e using explicit form of x of sym”(R) [Skagerstam 83]

Z=[dleop{ ) ol xxM},  ze(x) = Lt

m=1 m

in boson + fermion case z(x™) — zp(x™)+ (=1)"Tlzp(x™)



e Examples of xr:

vector: N@N xr = tr(U) + tr(U")
adjoint : xr = tr(U) tr(U")
Bplet: NPoN  xp =[P+ [(Uh)

p-plet: product of p fundamentals: R = N®? @ NP
Xneremer (W) = [r(U)]F + [r(UT)]F

(anti) symmetric product

3
X(NONEN) angisym () = & [xn(U)]” £ 3 xn(U) xn(U?) + 3 28 (UP)



Derivation from scalar partition function on S}% x -1

singlet projection implemented by coupling ®toa A, = U~ 19, U
constant part of Ag cannot be gauged away
e.g. in vector case: complex U(N) scalars ®; (t € (0,8))

2 5 (94+Ag)?, Ag=U"19U, U(t) = diag(e P, .. et

N ) . N e

Z:/Hdak e Fwh) F=—Y In|sin—5Z|+ F(a,p)

k=1 iZ]
_ N oo ot )
F=lIndet [~ (3 +A49)2+A, ] = Y ) dyIn | B85 4 2

=1 k,n

_ 0 N
F=—3Y ubu(a)ze(mB),  bm(a)=xr(U"(B)) =2} cosma



N = oo limit of low T expansion of singlet Z

e expand U integral in powers of x = ¢~ F, then take N — oo
e vector and adjoint: low T, N = oo expansion is convergent
e 3-plet case: expansion is only asymptotic (x, = 0)

e reason — rapid growth of # of singlets with dimension:
phase transition at small T, ~ (log N)~! — 0

i.e. low T phase effectively shrinks to T = 0 for N = o

e N = oo limit: counting of singlet states simplifies
Z expressed in terms of the ”single-trace” Zg; (x)=
counting only fully-connected (indecomp.) contractions

o0

logZ(x) = ) %Zs,t(xm)

m=1



Vector and adjoint representation cases

e vector case: singlets in sym” (N @ N) products of bilinears
e.g. bilinear singlets ) ../ Css Y ; D05 P

”single-trace” partition function is square of single-particle one

73(x) = [29(x)]

all singlets — N = oo singlet partition function

e adjoint case: singlets as products of single-trace operators

Z for single-trace ops from Polya enumeration theorem
[Sundborg 99; Polyakov 01]

73 = — Zq) log [1 — zo (x™)]




¢(m) — Euler’s totient function counting positive integers
up to a given integer m that are relatively prime to m
e N = oo singlet partition function — all multi-trace singlets

' = 1 adj / _m = m
log 229 =}~ %Zsi](x )=—) log |1 —ze(x")]
m=1 m=1

AdS/CFT perspective:

e vector case: bilinear primaries — massless HS in AdS
total partition function matches 1-loop AdS partition function
[Shenker, Yin 11; Giombi, Klebanov, AT 14; Beccaria, AT 14]

e adjoint case: single traces — towers of massless and massive
HS in AdS; on group-theoretic basis expect to match
multi-particle Z with its AdS counterpart [Bae, Joung, Lal 16]



Low temperature expansion of Z and counting of operators
expansion of Z in x = ¢~ P encodes counting of singlets

z= [ du exp mil%z@(mmu%} () =L

I(a,b) = fdll [Te>a (tr ué)ag (tr U)o — [Tr>1 €% ap!04,p,

e vector case: if @ is 4d scalar with zg (x) = ZS,4(X) — x((l(ir)”;)

ZEF =14 x4+ 8x° +35x* +112x° +330x° + 944 x" + ...

N — oo and x — 0 commute; co conv. radius: T, ~ N7 — o
e adjoint case: more operators at higher dimensions

adj

Ze) =1+ x+6x°+20x° +75x* +252x° + 914 x° + 3160 x” +. ..

finite radius of convergence: T, ~ N ~ 1



Comparison to direct counting of operators:

(1) vector case: “single-trace” partition function

4d scalar zg 4(x) = ’(61“_*;)2, [zg4(X)]* = x> +8x° +...:

dim 2: one operator ¢.¢;

dim 4: 4 + 4 operators @, d, ¢; and 9, ¢; ¢;

(i1) adjoint case: single-trace Z;f_j =x+5x%+...:

dim 1: one operator tr(¢)

dim 2: 1+ 4 = 5 operators tr(¢?) and 9, tr(¢)

(iii) 3-plet representation:

large N limit of small x expansion of Z for 4d scalar

Zo P =1+ 6x% + 482> +396 x* + 3504 x° + 35580 x°

1381216 x” 4- 4408956 x° 4 53647632 x° 4 689785308 x19 4 . ..



symmetric (+) or antisymmetric (—) 3-index reps

_ +
Zo P =14 2?4 8x% +36x* +120x° +404 x5 + 13687 + ...

Zo P =14 22483 +36x* +1202° +4032° + 136017 + . ..

fewer operators as some contractions become equivalent

compare to direct counting of operators:
e dim 2: singlets built out of scalar ® = (¢;j)

(9 9) = Pypirje, 1'j'k" = permutation of ijk: 3! = 6 different
o dim 3: singlets (¢d,¢), (0,9 ¢), 2x4x6 = 48operators
o dim 4: bilinears: (¢0,0v¢), (0,0,9¢@), (9,90 @)
ignoring ~ d#d,¢ = 0 (9 x 2 +4 x 4) x 6 = 204 operators
quartic: (i) reducible contraction (g¢@) (@) : 3 x 6 x7 =21



(ii) irreducible “single-trace” (@), ¢y @i = Xk
3% x 2 = 18 X, contracting 3 x 18 x 19 = 171

dim 4 singlets: 204 + 21 + 171 = 396 in agreement with x* term
e similar results in 6d, for fields of tensor multiplet, etc.

Comparing 3-plet case to adjoint case:

e number of singlets grows much faster with dim of operator
implies non-convergence of small x expansion of Z

e analog of "Hagedorn” transition in adjoint case

happens at much lower T, ~ (logN)™! — 0at N —



Closed expression for low T expansion of Z at N — oo

=TT L () fau b))’

m=1 k=0

for p-plet N®7 rep of U(N):  xr(U) = [tr(U)]" + [te(UT)]"

7 pplet _ ﬁ F, (mp_z [Zcb(xm)]z)

m=1

00 k)!
F,(y) = ¥ o be b, be=Yor . P=123,.
eg. forp=1landp=2: F(y)=¢, by =—F4

log 71-plet _ ZOO 1 [ch(xm)}z )

m=1m

log Z2-plet — —1Yy,, log (1 —4 [ch(xm)}z)



log Z*Y = — Y log [1 — zg(x™)]
m=1

e series I, no longer converges starting with p = 3

for p > 3 get only formal generating function for the spectrum

o p = 3: “resum” the series by replacing (3k)!in by by [, dte " 3

~ 1 -
R = B =1y/iv e 3 Ly ) + Ly (4]

F3(y) has a branch cut on negative real axis, smooth for y > 0

power series defining F3(y) is asymptotic expansion of F3(y)
alternative: Borel resummation of F3(y)

~ _ 1 -1 _
Biy)= [ dte”" ) ) =1y/—ky e s Ki(—4y )



e e.g. for 4d scalar in 3-plet representation

3 plet = (3k)! k[z xm)}Zk 20 (x) = J(C(1+3)C3)
’ 1—x

e same expression for other fields with corresponding z¢
encodes number of singlet operators built out of ® in 3-plet rep

e similar expression for p-tensor with distinguished indices
transforming under separate U(N)’s:

singlet Z found by gauging the full [U(N)|?P group;

less singlet operators but again large N limit of small x
expansion of Z becomes only asymptotic starting with p = 3



Large N partition function and phase transitions
rapid growth of # of states with dim of U(N) rep

recall adjoint case: Z diverges when zg(x) = 1 — x, = e P

log 29 = Y~ 72%9(x™) = — Y log 1~ za(x")]
m=1"" m=1
well defined for B > B, diverges Z ~ (B — B.) ! for B — B
cf. Hagedorn behaviour p(E) ~ efct, Z = [dEp(E) x*
e higher T find dominant distribution of eigenvalues of U
N — oo distribution approximated by density p(«), a € (—7, 77)
o(a) >0, [7 dap(a) =1.

e transition from phase where p > 0 on (—7, 77)
to phase where p > 0 only on (—ag, —ag) C (—71, 77)



e transition: balance measure term ~ N? and character term
N? ~ NP zg(x¢), x, = e /T

p =1,2,3,... for the vector, adjoint, 3-plet representation, etc.

. x—1 _
e vector case: x. — 1 as N — oo and since zg(x) "~ T9~!

T~ N T 5 0o
e adjoint case: T, is independent of N
7°Y 1
e 3-plet case: T, vanishes as N — oo, e.g. for a scalar

3—plet d—2 1
T ~ > 0
‘ 2 log N




3—plet 10
I ™~ log N*

similar for other fields, e.g. 6d tensor multiplet

e Summary: atlarge N 1st order discontinuous transition
between “low T” phase with p > 0 everywhere on (—7t, 77)
and “high T” phase with p > 0 only for |a| < ag

with g ~ (N zg) ~1/?; transition point at (N zg) = 7
for any T for sufficiently large N get “high T” phase

3-plet case —large N: T, — 0: low T phase is shrinking



Large N limit in terms of eigenvalue density
integration over U in terms of eigenvalues {e'%} (—m < a; < 7)

A I
7 = /doc e~ S(ax) , /dll :1_[/ du; 1_[51n2 ——
i—=17— '

= T i<j
S(a,x) = —1 Zlogsm “j + Y em(x) V(ma)
7] m=1
Cn = — L zop(x™), Vvee(p) =2 YN cos a;

Vad] Z cos(

N
V3Pt () =2 Y cos(a; + aj + o)
ik



integration over « — p(a) periodicon a € (—71, 77)

S(p,x) = Sm(p) +V(p, %), pla) = 5 . o(a —w)

Sy = N? /dzx do' K(a — o) p(a) p(a'),

K(a) = —1 log(2 —2 cosa) = Y _ 1 cos(ma)
m=1
vee — o N /dzxp Y cm(x) cos(ma)
m=1
vadi — N2 /d(x do’ p( Z cm(x) cos [m (e —a')]

v3-pl — 2N3/dadoc’doc”p(oc)p(oc’)p(oc”) i cm(x) cos [m(a+a’+a')]

m=1



Vector and adjoint cases
expand p(«) in Fourier modes

1 1711 & 1 & .
o(a) = = + N [; mgl 0.7 cos(ma) + — mZ:;l 0. sm(moc)}

=1
m=1
V=2 ) cmpm, Vel =3 cm [(om)* + (o))
m=1 m=1
e vector case: action 1s stationary at

om = —mem = zo(x"), om =0



get same expression for Z as by Gaussian integral over p:;

e adjoint case: integrating over p;
00 1 L Z(I)(xm)

Sadj _ Z
m

m=1

log Z*Y = — Y log [1 — zg(x™)]
m=1

(o) + (o))

e small T: small x and z¢(x) near p =const expansion is ok
e larger T: transition where p is zero only on (—wg, ag) C (—71, 77)

1
vector case: transition at T, ~ Nd-1 > 1
adjoint case: critical T from condition zg(x) =1 — T, ~1



e low T phase: action and Z not depend on N >> 1: log Z ~ N
e T > T, phase: stationary point solution for p(«)

due to a balance between measure and potential:

action at stationary point scales as measure term ~ N2

i.e. in high T phase: log Z ~ N?

3-plet case
S= 3 & [(om)* + (pn)?] + VEPE (%, x)
m=1
V3Pt — 2 Y 120 (x™) [(0)3)° — 303 (o)’
m=1

e action unbounded from below — integral over p;- diverges
® 0= %zconst is saddle not minimum even at low T



e 0:- may be large — violating positivity of p(«)

e phase transition: p° potential becomes of order o> measure
condition: N* ~ NPzg(x), p=1,2,3

e vector case: measure term ~ N? against potential ~ Nzg(x)
e adjoint case: both terms are of the same order ~ N?

e 3-plet case: potential scales as N°zg (x) and get N* ~ N3zg(x)
e here low T phase shrinking with increasing N: T, — 0
action and log Z scaling as N? at stationary-point solution



Solution for eigenvalue density at large N
stationary point condition in terms of p(«):

/d(x’p((x’) cot &2

o0

=6N Y zo(x™) /doc’doc”p(oc’)p(oc”)sin m(a+a’ +a’")]

m=1

assume p is symmetric and supported on (—«g, )

/d(x o(a') cot 5% =2 Y " ay, p5, sin(ma),

m=1
am = 3Nz (x™), om = | dap(a) cos(mu)
o(a) = % \/sm2 0 —sin*4 Y2, Qg cos [(k— 1) a]

Qk =2 ZZO:() Aty pk—l—ﬁ Pg(COS (XQ)




e model with just one harmonic p;: good for large 3
when x = ¢ P <« 1 and a,,, decreases with m

2%, no = [INzo(e F)] .
o for each temperature and N such that Nzg(e F) > &

ola) = —1 \/u—sinzg COS &

.2 &9
7T SIN 2

11 = sin

a| < g ; o(a) =0, ap<la|<m
su(2—u)? = [Nch(e_ﬁ)]_1
for % < Nzg(e P) < %2 solutions 0 < u1 < up <1

e conclusions supported by numerical analysis



Summary

e singlet partition function Z of free CFT in higher reps:
for rank > 3 tensors # of singlet states/operators grows

so fast with energy/dimension that small T expansion of Z

has 0 radius of convergence in N = co limit

3—plet 1 .
TC NlogN /OatN%OO

e reflected in critical
e for large but finite N get two phases: T < T, and T > T,

F = —log Z ~ N? in high T phase (for all reps)

e similar behaviour for singlet Z of p-fundamental rep of U(N)
and for [U(N)|? invariant p-tensors with inequivalent indices



e AdS dual of free p-plet or p-tensor CFT ?

rich spectrum: infinite towers of massive HS fields in AdS
in addition to massless HS tower (present as in vector case)
cf. “tensionless string” spectrum in adjoint case;
“tensionless membrane” spectrum in p = 3 case?

e dual AdS action? inverse coupling ~ N to match

large N correlation functions in free 3-plet CFT

e low-T phase: large N free energy F = 1-loop log Z

of all HS fields in thermal AdS ~ N” — to match F in CFT

e high-T phase: boundary CFT free energy F ~ N2

(i) adjoint case (AdS action ~ N?):

agrees with AdS black hole free energy/entropy scaling for
finite (in AdS units) size BH: T, ~ Ty ~ 1 [Witten 98]
(ii) vectorial case (AdS action ~ N):

T. ~ N7 — co: high T phase is not attainable



classical thermal object would give F ~ N not N2
T, ~ Ty — oo: BH of 0 (Planck length) size [Shenker, Yin 11]
[cf. no stable AdS-Schwarzschild BH solution in HS theory]

3-plet case:

e 1-loop Z in thermal AdS for full spectrum

of AdS fields dual to singlet operators in large N limit

(1) should also be given by asymptotic series matching
low-T phase expression for boundary log Z ~ N

(ii) in high-T phase log Z ~ N?

while possible contribution from classical AdS action ~ N3
T, ~ Ty ~ (logN)~! — 0:

as if size of BH is of order of AdS scale

N — oo: no low-T phase, only high-T (opposite to vector)



e these conclusions may change in interacting 3-plet CFT ?
Examples? in 3d?
T, may become finite at non-trivial large N fixed point ?

e (2,0) tensor multiplet theory in 6d should have
AdSy; dual with a supergravity limit in the N — co limit
admitting BHs and thus predicting N* scaling of free energy



