Weyl quantization map and star product for the
charge-monopole system

Phys. Rev. D 94 (2016) 105021

M.A. Soloviev

P.N. Lebedev Institute, Moscow

Ginzburg Centennial Conference on Physics, May 30, 2017



Motivation and historical remarks
Dirac’s charge quantization condition:
L h
eg = —nnc
€72

e The fibre bundle description (Wu & Yang (1975), Greub & Petry
(1975), Trautman (1977),...)
e The magnetic Weyl calculus (B = V x A) (Stratonovich, Miiller
(1999), Karasev & Osborn (2002), Mantoiu & Purice (2004), ...)

e The quaternionic Hilbert space formulation (Emch & Jadczyk (1998),
Carifiena, Gracia-Bondia, Lizzi, Marmo, and Vitale (2009)...)

e The theory of deformation quantization of Poisson manifolds (Bayen,
Flato, Fronsdal, Lichnerowicz and Sternheimer (1978), Fedosov,

Rieffel (1993), Kontsevich (1997), ...)

The aims are: 1) to define rigorously Weyl quantization maps by
using complex and quaternionic Hilbert spaces; 2) to derive
representations for the corresponding star product; 3) to show how
this product is related to the Kontsevich deformation quantization
formula



Magnetic Poisson brackets

Hamilton's equations of motion for a particle in a magnetic field
XI:{XIaH}a Pi:{Pi,H}

1
H= — (p2 2 2
2m(p1 + p3 + p3)

The magnetic symplectic form

1 , :
dp; A dx' + Eﬁ,-j dx' Ndxd, By = eeuB*

o 4 ) .
{x',¥'} =0, A{pi,pi} = Bij(x), {X'.pj} =
The magnetic monopole field

B (x) =g

xk

X2
Ai(r,9,0)= —tan§e¢(97€) A,(r,gb,e):—%cotge(ﬁ(e;éo)
A, =A_+2ggrad¢ (0#0,m)



Description in terms of fiber bundle theory
W, =e™Y_ n=2eg/h
P, =—ikV,,  V;=0,— i%Aj
[Q,Q1=0, [Q,P]=ihdj, [P,P]=ihdy
The underlying principal bundle is C2 &' C2 \ {0} equipped with the
projection 7 onto the base space R3 £ R3\ {0} = C2/U(1)
C? 5 R X =zlgz
The restriction of the bundle (C2,R3, 7, U(1)) to the unit sphere is the
Hopf bundle

S$3 ~ SU(2) — SU(2)/U(1) = S?

The natural connection )
w=iIm(z'dz)/z 2

Local cross-sections
si: z1 =+/rcos(0/2), z=/rsin(6/2)e’, s.=s.e?

nsioyw = i%AJ(.i)dxj



A weak projective representation of the translation group

Definition. For any vector a € R?, we define V(a) to be the
operator transforming each section V of the line bundle into
another section whose value at the point x is the parallel transport
of the value of V¥ at the point x + a along the straight line path
xx=x+a—ta 0<t<I1.

(V(a)V(b)V(a + b)-lw) (x) = exp {—’; féA( » A, - dr} V(x)

X+a

Triangle A(x; a, b) in the base x-space .
%—La—&-b
exp —57{ AL -dr ), =exp —E/ B dn
h OA(x;a,b) h A(x;a,b)

V(a)V(b) = M(a, b)V(a+b), (M(a, b)\ll)(x) = exp {711 /A( » 6} V(x)

+



Associativity and charge quantization

The associativity of the operator product (V(a)V(b))V(c) = V(a)(V(b)V(c))
implies that the multiplier M(a, b) satisfies the 2-cocycle relation

M(a, b)M(a + b, c) = V(a)M(b, c)V(a)"*M(a, b+ ¢),
where V(a)M(b, c)V(a)~ ! is the operator of multiplication by

i
expq — % / B
{ B J A(xtaibic) }

The cocycle identity means that the flux through the surface of the
tetrahedron spanned by the points x, x+a, x4+ a-+b, and x+a+ b+ c

is an integer multiple of 27, which is satisfied by the charge quantization
condition

x+a+b+c

I

7\7/&‘;

xtath



The functional analytic aspects

1. The set of smooth compactly supported sections of the line
bundle £, associated with the principal bundle (C3,R3, 7, U(1)) is
dense in the space L2(R3, E,) of square integrable sections.

2. The space [%(R3, E,) is naturally isomorphic to the Hilbert
space of complex-valued functions on C? satisfying the
equivariance condition

V(ze'™) = e W(z), zeC?
and square integrable with the weight zfz/x.

3. For each fixed a, the operator-valued function V(ta), t € R, is a
strongly continuous one-parameter unitary group, i.e.,

V(sa)V(ta) = V((s + t)a) forall s,t € Rand V(ta)¥0 — WV ast—0

4. The map t — V/(ta) is strongly differentiable at ¢t = 0 on the set
of smooth sections with compact support and its derivative is V..

5. The operator i V, is essentially self-adjoint on the domain D
consisting of all infinitely differentiable sections whose support
does not intersect the line spanned by the vector a and its closure

is the infinitesimal generator of the unitary group V/(ta). "



Weyl quantization map
The magnetic Weyl system
T(u,v) = V(hu)e™ Qe huv/2 — (ilwPtvQ) - p — _jpy
forms a weak projective representation of the phase-space translations
T(w)T(W') = Mup(Q; w, w)T(w + w'), w = (u,v)

with the operator-valued multiplier

(Mh(Q; w, W')\U) (x) = exp { izh(u~ vVi—v-d) - ;/A(X;hu’hu/)ﬂ} V(x)

The quantization map is defined by

1 ~ .
fr— O = ny /dudv f(u,v)elwPrvQ)

where

e 1 —i(p-u+q-v
f(um)zw/dpdqe (putav)f(p, q)



Quaternionic representation
The principal bundle (C2,R3, 7, U(1)) is a reduction of the trivial
bundle R? x SU(2)

C2 2 S R3xSUQR)  h(z-e) = h(z)-n(e®), n: U1)— SU(2)

s
pri

R3

1 (zy —Z
h: z = (7(2),g), where g = [l (z; ;2> € SU(2)

(B Q)(E) = nu(w(€),  m: InC = su(2), (i) = ios

Siw= é(l —cosf)dp = (hos )" Q= é(fg(]. —cosf)d¢

Transforming the local cross-section ho s, into the global one

cos(0/2 sin(0/2)e~®
s=(hosi)e, g(0.9) = (_sin((e/z))ef¢ c(os(9)/2) > :

we obtain the su(2)-potential

g Y (hos, )" Qg+ g ldg = —ie,-jkx—crjdxk
27 |x?



Quaternionic quantization map
Quaternionic imaginary units e; = —io;, j=1,2,3
The connection Q induces on [*(R3, d3x; H) the covariant derivative

1 x!
Vi=0 —€jik——=
k k+2€Jk|X|2

whose components satisfy the commutation relations

Xk Xkek

1
Vi, V)] = —EJ(X)ijWa J(x) =

The operators V(a) = exp{V,} form a weak quaternionic projective
representation of the translation group

V(a)V(b) = M(a, b)V(a+b), (M(a, b)¥)(x) = exp {—J(;)/A( | b)ﬁ} V(x)

The quaternionic quantization map is defined by

f— Of = ( mE /dudvf(u v) ! )(uP+v-Q) P=-J(x)aV,
where
F(u,v / dpdq e~ w4 (Re £(p, q) + J(x) Im £(p, ).

9



An operator analog of the twisted convolution

The product of the operators corresponding to the phase-space
functions  and g can be written as

1 ~

0f0, = @05 /dwdw' f(w)g(w')T(w)T(w')

= (27].;.)6 /dew’ F(W)g(wl)Mh(Q; w, w') T(w + w')

_ ﬁ / dw (F @1 8)(Q; w) T(w),

where w = (u,v), T(w) = e/(“P+vQ) and

(F on £Qw) ™ s [ Tl = ()M (Q: w — '),

Lemma. Let ;(Q) be the multiplication operator by a complex-

valued function y(x). Then the symbol of the product u(Q) T (u,v)
is equal to the function

p(x — hu/2)e/Prvx)

10



The integral representation of the star product

(f*hg)(s) = ﬁ / dwdw’ F(W*W/)g(wl)j\/[h(xihu/z W*W/7 W/)eiw.s

- (2i)6 / dwdw' F(w)g(w') Mn(x—h(u+u') /2, w, w')e T2 (s = (x, p)).

I
(f xn g)(s) = /ds' ds" K(s;s',s") f(s)g(s"),

1 2i
K(x pix ol X' 0) = oo { 310X = ) = (= x)p = 21}
i
P {h /A(xp(’,x”) ﬂ}

’
’
X /

X +x”—x
\ 7
X
R/ .
x+x’—x” X—X +x

Triangle ﬁ(x,x’,x”) in the base space

’ 1"
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The asymptotic expansion of the star product

The differential form of the star product is obtained from the shifted
multiplier

- :

Mp(x—h(u+u")/2; u,v, 0’ v') = exp : —(u-v —v-d) - : B
. . 2 h (x;hu,hu’)

by substituting

u— —/gp, v — —/gx, U= —id,, VvV = —/8

U+U /X

.
X+ u+u

The power expansion of the magnetic flux through the trlangle gives
the same result as the Zassenhaus formula

Triangle A*(x; hu, hu')

S
. , . iy /
el(u-P+u P) _ elu-Pelu -P I | eC,,(u-P,u -P)

[uP u'P]= @uﬁuu —u-ﬁu',

G= —g[uP, [uP,u'P]] — f[u P, [uP,u'P]] = —%(u (u-9)Bu +2u-(u - 8)5u')
...................................................................................... 12



Calculation up to the :3-order terms

The bidifferential operator defining the third order star product

3 . k
u(3) (a-aabm)
k=0

(O 00305 @) (14 200 7 By )

(b (- 050, + b, - B - 0750,

The explicit expression in terms of the Poisson tensor P = (ﬁ(lx) _OI)
h2

Frg=fg+ P 0,505 - g P P04, 00, f 00, 0,8

_ %PelblP32b2P33b3aalaaz PR
— gz])albl O, P22 (02,02, f O, 8 — Oy 02 Ob, &)
_ gpalblpazlﬁ E)bZPaSbs (aal Oy Oy F Oy Oy & — Oay Oy £ Oy Oy Oy g)
— %Palblpazbzabl Oy PP (D2y 02y D F Oy g + Doy f 0,03, 0,8) + O(I*)
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Kontsevich’s graphical representation

g_f & _inf g | 1 (ih\2f
.—'X.—i_j.e.»'—i_j()

14



Conclusions

e The Weyl quantization map can be rigorously defined for the
charge-monopole system by using the parallel transport of fibers, which
applies to the operator representations in both complex and quaternionic
Hilbert spaces.

e These two operator quantizations yield the same phase-space star
product whose integral form provides the strict deformation quantization
of the system.

e A simple and direct way of finding the star product is by treating the
magnetic Weyl system as a weak projective representation of the
translation group and using an operator analog of the twisted convolution
product.

e The associativity of the magnetic star product is ensured by the charge
quantization condition.
e The differential form of this star product agrees completely with the

Kontsevich formula for deformation quantization of Poisson manifolds.
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