

Violation of the Goldreich-Julian relation in a neutron star

Denis Sob'yanin

Tamm Division of Theoretical Physics, Lebedev Physical Institute

Astron. Lett. 42, 745 (2016)

Main Conference Hall

June 2, 2017

Neutron stars

- ightarrow A compact massive rotating magnetized star
- $\rhd\,$ Classical observational manifestation—the radio pulsar (Beskin 1999)

Multifarious zoo

- ightarrow magnetars (Mereghetti 2008)
- ightarrow gamma-ray pulsars (Caraveo 2014)
- $\rhd\,$ rotating radio transients (RRATs) (McLaughlin et al. 2006)
- \vartriangleright extreme nullers (Wang et al. 2007)
- \vartriangleright hybrids of the above objects (Burke-Spola
or & Bailes 2010)

Exterior—a magnetosphere

- \vartriangleright vacuum (Deutsch 1955)
- ▷ plasma-filled (Goldreich & Julian 1969)
- > nonstationary—switching between the above cases (Istomin & Sob'yanin 2011)

Manifestations of the interior?

- \triangleright precession (Link 2007)
- \triangleright glitches (Espinoza et al. 2011)
- \triangleright bursts (Deibel et al. 2014)

Possible mechanism

- \rhd relation to deformation (Duncan 1998; Makishima et al. 2014; Haskell & Melatos 2015)
- $\rhd\,$ role of the internal magnetic field (Cutler 2002; Lander et al. 2015; García & Ranea-Sandoval 2015)
- \vartriangleright mechanics as a mediator between internal processes and observations

Manifestations beyond mechanics?

- ightarrow example—generation of currents by a changing field
- \vartriangleright reflection via crust heating and concomitant X-ray and radio emission
- $\vartriangleright\,$ requires the possibility of a change in the charge density

Common assumptions

The internal charge density is

- \triangleright bounded
- \triangleright unchanged
- ightarrow equal to the Goldreich-Julian density

$$\rho_{\rm GJ} = \frac{-\mathbf{\Omega} \cdot \mathbf{B}/2\pi}{1 - v^2}$$

Neutron star

 \triangleright arbitrary form

 \vartriangleright arbitrary rigid rotation around a fixed point

 $\mathbf{v} = \mathbf{\Omega} \times \mathbf{r}$

 \vartriangleright Maxwell's equations

div
$$\mathbf{E} = 4\pi\rho$$
, div $\mathbf{B} = 0$
curl $\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$, curl $\mathbf{B} = 4\pi\mathbf{j} + \frac{\partial \mathbf{E}}{\partial t}$

▷ infinite conductivity ("Ohm's law")

$$\mathbf{E} = -\mathbf{v} \times \mathbf{B}$$

 $\rhd\,$ latter follows from the relativistic Ohm law

$$\mathbf{j} = \sigma \gamma (\mathbf{E} + \mathbf{v} \times \mathbf{B} - \mathbf{v} \mathbf{v} \cdot \mathbf{E}) + \rho \mathbf{v}$$

when $\sigma \to \infty$

Magnetic field

 \triangleright freezing-in condition

$$\frac{\partial \mathbf{B}}{\partial t} = \operatorname{curl}(\mathbf{v} \times \mathbf{B})$$

 \triangleright governing equation

$$\frac{d\mathbf{B}}{dt} = \mathbf{\Omega} \times \mathbf{B}$$

with the full time derivative $d/dt = \partial/\partial t + \mathbf{v}\cdot\nabla$

ightarrow similarity to the equation for the radius vector

$$\frac{d\mathbf{r}}{dt} = \mathbf{\Omega} \times \mathbf{r}$$

ightarrow magnetic field vector rotates analogously to the radius vector

Quaternions

- \triangleright describe rotation of a rigid body
- \triangleright in some sense resemble complex numbers

$$\Lambda = \cos\frac{\alpha}{2} + \zeta \sin\frac{\alpha}{2}$$

- $\vartriangleright\,$ corresponds to rotation around an axis $\pmb{\zeta}$ through an angle α
- ightarrow generally time dependent, $\boldsymbol{\zeta} = \boldsymbol{\zeta}(t)$ and $\alpha = \alpha(t)$
- $\vartriangleright\,$ final radius vector is related to the initial radius vector via

 $\mathbf{r} = \Lambda \circ \mathbf{r}_0 \circ \bar{\Lambda}$

 \triangleright product of quaternions $M = \mu_0 + \mu$ and $N = \nu_0 + \nu$ is

$$M \circ N = \mu_0 \nu_0 - \boldsymbol{\mu} \cdot \boldsymbol{\nu} + \mu_0 \boldsymbol{\nu} + \nu_0 \boldsymbol{\mu} + \boldsymbol{\mu} \times \boldsymbol{\nu}$$

 \triangleright the product is associative but not commutative

$$M \circ N \neq N \circ M$$

Magnetic field

 \vartriangleright rotation for an arbitrarily changing angular velocity

$$\mathbf{\Omega} = \mathbf{\Omega}(t) = 2\dot{\Lambda} \circ \bar{\Lambda}$$

gives

$$\mathbf{B}(\mathbf{r},t) = \Lambda \circ \mathbf{B}(\bar{\Lambda} \circ \mathbf{r} \circ \Lambda, 0) \circ \bar{\Lambda}$$

 \triangleright corotation always

Electric field

 \triangleright governing equation

$$\frac{d\mathbf{E}}{dt} = \mathbf{\Omega} \times \mathbf{E} - \mathbf{w} \times \mathbf{B}$$

with the rotational acceleration $\mathbf{w} = \dot{\boldsymbol{\Omega}} \times \mathbf{r}$

 \triangleright corotation for a constant angular velocity

Charges and currents

$$\rho = \frac{\operatorname{div} \mathbf{E}}{4\pi}$$
$$\mathbf{j} = \frac{1}{4\pi} \left(\operatorname{curl} \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} \right)$$

 \triangleright charge-current relation

$$ho =
ho_{
m GJ\,0} + {f j}_{
m m} \cdot {f v}$$

▷ Goldreich-Julian density for zero velocity

$$\rho_{\rm GJ\,0} = -\frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi}$$

 charge density depends on the azimuthal component of the magnetization current (not the total current)

$$\mathbf{j}_{\mathrm{m}} = \frac{\mathrm{curl}\,\mathbf{B}}{4\pi}$$

Charge density

ightarrow magnetization current corotates analogously to the magnetic field

$$rac{d\mathbf{j}_{\mathrm{m}}}{dt} = \mathbf{\Omega} imes \mathbf{j}_{\mathrm{m}}$$

 \triangleright Were $\mathbf{j}_{\mathrm{m}\phi} = \rho \mathbf{v}$, we would have the standard Goldreich-Julian density

$$\rho_{\rm GJ} = \frac{\rho_{\rm GJ\,0}}{1 - v^2}$$

- $\vartriangleright\,$ magnetization current is independent of $\rho {\bf v}$
- $\vartriangleright\,$ Goldreich-Julian relation does not hold

$$\rho \neq \rho_{\rm GJ}$$

- $\vartriangleright\,$ importance of the magnetic field topology
- \vartriangleright twisting magnetic field lines results in locally accumulating charge

Super-Goldreich-Julian density

- charge accumulated due to twisting can significantly exceed the standard Goldreich-Julian value
- ightarrow example—a twisted torus
- ▷ the charge density is $R_0/r_0 \gg 1$ times $\rho_{\rm GJ\,0}$
- ▷ for $r_0 \approx 1$ km and $R_0 \approx 10$ km the charge density is an order of magnitude higher
- possible structure of the internal magnetic field for the magnetar (Braithwaite and Nordlund 2006)

Crust heating

- ightarrow twisting or untwisting magnetic field lines results in the appearance of currents
- ightarrow charge accumulation in the twisted torus gives an extra electric field energy $\varepsilon \sim q^2/2R$ with the charge $q \sim (R_0/r_0)\rho_{\rm GJ0}V$
- ightarrow energy release $\varepsilon \sim 10^{39}$ erg even when the magnetic field is unchanged
- ightarrow heating due to formation of large stationary magnetization currents
- ightarrow example—the magnetar crust
- \rhd thermal emission is provided by the energy release $H\sim 10^{20}~{\rm erg\,cm^{-3}\,s^{-1}}$ (Kaminker et al. 2012)
- \rhd for the conductivity $\sigma\sim 10^{22}~{\rm s}^{-1}$ the current density $j\sim \sqrt{\sigma H}\sim 10^{21}~{\rm cgs}$ units
- ightarrow the current density can be obtained due to the electromagnetic field rearrangement accompanied by the appearance of a large charge density $\rho = \lambda \rho_{\rm GJ}$ with $\lambda \sim 100$
- ightarrow change in the crustal magnetic field at small spatial scales $R/\lambda \sim 100$ m

Observational consequences: RRATs

- \rhd rotating radio transients as separate, s
parse, short, relatively bright radio bursts
- \triangleright typical burst rate 1 min⁻¹–1 h⁻¹
- $\rhd\,$ intensity of single radio bursts from 100 mJy to 10 Jy at 1.4 GHz (Keane et al. 2010)
- \triangleright phase is approximately retained
- \vartriangleright underlying periodicity 0.1–6.7 s
- ▷ RRAT as a pulsar lightning (Istomin & Sob'yanin 2011)
- ▷ further application of the idea to FRBs (Katz 2017)

Observational consequences: RRATs

- ▷ rearrangement of the internal magnetic field can manifest itself via crust heating by external magnetospheric effects related to radio emission
- ▷ heating can initiate a transition from a RRAT to pulsar state of the neutron star (Istomin & Sob'yanin 2011)
- ▷ observed in two hybrid radio sources PSR J0941-39 and PSR B0826-34 (Burke-Spolaor & Bailes 2010; Esamdin et al. 2012)

Summary

- \vartriangleright neutron star rotating in an arbitrary way is considered
- charge density is not equal to and can exceed significantly the common Goldreich-Julian density
- \triangleright charge distribution is connected with the magnetic field topology
- ightarrow rearrangement of the internal magnetic field is potentially observable
- ▷ twisting and untwisting magnetic field lines causes internal currents that can heat the crust and change observational properties of neutron stars