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PARTON MODEL�������������������Elasti sattering : eletron � proton���> proton (hadron) is NOT point-likeDeep inelasti sattering : eletron � proton���> proton (hadron) onsists of point-like partiles-partons��������������������Cross setion (hadron) = Σ ross setion (parton) × weightsWeights � probabilities in the system of in�nite momentum(Bjorken, Feynman)



IN QCD weights depend on Q of hard proesses(SCALING VIOLATION, improved PM)
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Saling violation (dependene on Q) fromDGLAP ( Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ) equations:
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where g(µ2) is the running oupling onstant at the referene sale µ2,

nf is the number of ative �avours,
ΛQCD is the dimensional QCD parameter.



It is possible (BUT very rarely): hard double parton sattering(subproesses A and B)

The inlusive ross setion of a double parton sattering proess in ahadron ollision is written in the following form (with only the assumptionof fatorization of the two hard parton subproesses A and B)(Paver, Treleani,..., Blok,...., Diehl,...).
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A and B at the sales Q1 and Q2.
σ̂Aik and σ̂Bjl are the parton-level subproess ross setions.The fatorm/2 appears due to the symmetry of the expression for interhan-ging parton speies i and j. m = 1 if A = B, and m = 2 otherwise.



The double parton distribution funtions Γij(x1, x2;b1,b2;Q
2
1, Q

2
2) are themain objet of interest as onerns multiple parton interations. In fat,these distributions ontain all the information when probing the hadronin two di�erent points simultaneously, through the hard proesses A and

B.It is typially assumed that the double parton distribution funtions maybe deomposed in terms of longitudinal and transverse omponents asfollows:
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If one makes the further assumption that the longitudinal omponents
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the ross setion of double parton sattering an be expressed in thesimple form
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d2b(T (b))2]−1is the e�etive interation transverse area (e�etive ross setion).
Reff is an estimate of the size of the hadron.



The momentum (instead of the mixed (momentum and oordinate))representation is more onvenient sometimes:
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The main problems are* to make the orret alulation of the two-parton funtions
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The solutions of the generalized DGLAP evolution equations with thegiven initial onditions at the referene sales µ2(t = 0) may be written inthe form:
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The �rst term is the solution of homogeneous evolution equation(independent evolution of two branhes), where the input two-partondistribution is generally NOT known at the low sale µ(t = 0). For thisnon-perturbative two-parton funtion at low z1, z2 one may assume thefatorization Dj1
′j2
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h(x2, t)the fatorization hypothesis usually used in urrent estimations.This MAIN result shows that if the two-parton distributions are fatorizedat some sale µ2, then the evolution (seond term) violates this fatorizationinevitably at any di�erent sale (Q2 6= µ2), apart from the violation due tothe kinemati orrelations indued by the momentum onservation.



For a pratial employment it is interesting to know the degree of thisviolation. We did (Korotkikh, Snigirev) it using the CTEQ �t for singledistributions as an input. The nonperturbative initial onditions Dj
h(x, 0)are spei�ed in a parametrized form at a �xed low-energy sale Q0 = µ =

1.3 GeV. The partiular funtion forms and the value of Q0 are not ruialfor the CTEQ global analysis at the �exible enough parametrization,whih reads
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The evolution e�ets are getting larger with inreasing hard sales. Thenumerial estimations by integrating diretly the evolution equations(Gaunt, Stirling; Diehl, Kasemets, Keane) on�rm also this onlusion.The partiular solutions of non-homogeneous equations ontribute to theinlusive ross setion of DPS with a larger weight (di�erent e�etiveross setion (Cattaruzza,Del Fabbro,Treleani; Ryskin, Snigirev;Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling))as ompared to the solutions of homogeneous equations(the �traditional� fatorization omponent).The latter solutions are usually approximated by a fatorized form if theinitial nonperturbative orrelations are absent. These initial orrelationonditions are a priori unknown yet not quite arbitrary as they obey thenontrivial sum rules whih are imposed upon the evolution equations. Theproblem of speifying the initial orrelation onditions for the evolutionequations, whih would obey exatly these sum rules and have the orretasymptoti behavior near the kinematial boundaries, has been extensivelystudied (Gaunt, Stirling; Snigirev; Ceopieri; Chang, Manohar, Waalewijn;Rinaldi, Sopetta,Vento; Gole-Biernat, Lewandowska).



The experimental e�etive ross setion, σexp
eff , whih is not measureddiretly but is extrated by means of the normalization to the produt oftwo single ross setions:
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appears to be dependent on the probing hard sale. It should DECREASEwith inreasing the resolution sale beause all additional ontributionsto the ross setion of double parton sattering are positive and inrease.In the above formula, σγj and σjj are the inlusive γ+ jet and dijets rosssetions, σγ+3j
DPS is the inlusive ross setion of the γ+3 jets events produedin the double parton proess.It is worth notiing that the CDF and D0 Collaborations extrat σexp

effwithout any theoretial preditions on the γ+ jet and dijets ross setions,by omparing the number of observed double parton γ + 3 jets events inONE pp̄ ollision to the number of γ+ jet and dijets events ourring inTWO separate pp̄ ollisions.



The reent D0 measurements represent this e�etive ross setion, σexp
eff ,as a funtion of the seond (ordered in the transverse momentum, pT) jet

pT , pjet2
T , whih an serve as a resolution sale. The obtained ross setionsreveal a tendeny to be dependent on this sale.
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This observation an be interpreted as the �rst indiation to the QCDevolution of double parton distributions(Snigirev; Flensburg, Gustafson, Lonnblad, Ster ).



Promising andidate proesses to probe DPS at the LHC:

• same-sign W prodution (�pure�, BUT very rare)

• γ + 3 jets (Tevatron also: D0, CDF)

• W (Z) + 2 jets (ATLAS � �rst measurement σeff at LHC)

• 4 jets (Tevatron also: CDF)
• bb̄ pair +2 jets

• bb̄ pair + W boson

• pairs of heavy mesons (in partiular, double J/ψ prodution)(LHCb � �rst measurement of double J/ψ prodution )



J/ψ pairs produtionAzimuthal angle di�erene distribution after imposing uts on the J/ψtransverse momenta for SPS

It is rather di�ult to disentangle the SPS and DPS (�at) modes: thedi�erene beomes visible only at su�iently high uts, where the produtionrates are, indeed, very small.



Distribution over the rapidity di�erene between J/ψ mesons. (Dottedurve: leading-order SPS, dash-dotted urve: DPS)

Seleting large rapidity di�erene events looks more promising to disentanglethe SPS and DPS modes



Double di�erential distribution for the leading-order SPS prodution mode



It is qiute possible (BUT very rarely): hard TRIPLE parton sattering(subproesses A, B and C)



Similar to DPS with only the assumption of fatorization of the threehard parton subproesses A, B and C, the inlusive ross setion of aTPS proess in a hadron ollision may be written in the following form
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As in the ase of DPS it is typially taken that the triple parton distributionfuntions may be deomposed in terms of the longitudinal and transverseomponents as follows:
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σTPS,fact = k · σeffwith k = 0.82± 0.11 as the average of all typial parton transverse pro�lesusually used in the literature (Gaussian, dipole �t, PYTHIA, HERWIG,....)TPS in QCD:A.M. Snigirev, Phys. Rev. D 94, 034026 (2016).D. d'Enterria, A.M. Snigirev, arXiv:1612.05582 [hep-ph℄ (2016)(PRL 118, 122001 (2017)).D. d'Enterria, A.M. Snigirev, arXiv:1612.08112 [hep-ph℄ (2016).



m-parton distributions:
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Shelest, Snigirev, Zinovjev, Preprint ITP-83-46E, Kiev, 1983allows us:1) to justify the simple fatorization form of ross setions2) to write the evolution orretions to it
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The sale fator for single splitting ontributions

1

σ2
TPS,10

=
∫

(2π)2δ(q1 + q2 + q3)F2g(q1 + q2)F2g(q3)

×F2g(−q1)F2g(−q2)F2g(−q3)
d2q1

(2π)2

d2q2

(2π)2

d2q3

(2π)2

=
∫

f2(b − b3 + b′
3)f(b)f(b3)f(b′

3)d
2bd2b3d

2b′
3.In a simple model where the transverse parton density is taken to haveGaussian funtional form, the ratio

σ2
TPS,fact.00

σ2
TPS,10

=
12

7
= 1.7

shows that the single splitting ontributions to the ross setion areenhaned, relative to the fatorization one, by the fator
2 × 3(combinatorial) × 1.7(scale) ∼ 10.

So we onlude that the single splitting terms may provide a sizableontribution to the ross setion of TPS even if they onstitute a smallorretion to the triple fatorized parton distribution funtions.


