

Tracing the gas composition of Titan's atmosphere with Herschel: Advances and discoveries

Miriam Rengel

Max-Planck-Institut für Sonnensystemforschung, Germany European Organisation for the Exploitation of Meteorological Satellites, Germany

European Space Astronomy Centre, Spain

Moreno R., Courtin R., Lellouch E., Sagawa H.; Hartogh P., Swinyard B., Lara M., Feuchtgruber H., Jarchow C., Fulton T., Cernicharo J., Bockelée-Morvan D., Biver N. Banaszkiewicz M., González A.

Ginzburg Centennial Conference on Physics - May 29-June 3, 2017, Moscow Plance Generation

1. Introduction

Why Titan?

Titan is covered by a dense atmosphere, which is complex and diverse!

 The origin of Titan's atmosphere is poorly understood and its chemistry is complex

More complex molecules

1. Introduction

Why Titan?

Sensitive observations of the constituents of the atmosphere are essential to constructing models of the Titans's atmosphere and its history.

1. Introduction

Spectroscopy of Titan has been already performed by:

Ground-based observations have also improved our knowledge of Titan's atmospheric composition:

Ground-based observations have also improved our knowledge of Titan's atmospheric composition:

Titan and other Solar System bodies are often used by ALMA ALMA to obtain the absolute flux scale for the science target.

ALMA Archive data - 2012

Cordiner et al. 2014

Serigano et al. 2016

How we can further improve our knowledge of Titan's atmospheric composition ?

A new window was opened...

Herschel Era

Spectral and Photometric Imaging Receiver (SPIRE). PI: M. Griffin, Cardiff University

> Photometer: 250, 350, 500 μm Spectrometer: 194- 672 μm.

Titan's Spectroscopy in the Herschel Era

In the framework of the KP *"Water and related chemistry in the Solar System" =>* Exploration of the FIR and submm range with high sensitivity

•55 – 671 μ m is a rich region with numerous rotational transitions of **water** and other trace gases

•These line transitions are stronger than those accessible from Earth

•HIFI/PACS/SPIRE higher spectral resolution and sensitivity than previous instruments

Titan's Observations performed with Herschel

SPIRE: Full range spectrum (194 - 671 μm or 15-50 cm⁻¹) – July 2010, ~8.9h, SR= 0.04 cm-¹

PACS: Full range spectra (51-220 μm or 50-180 cm⁻¹) (twice, 0.63h and 1.1h), R= 1000-5000

Dedicated line scans H_2O lines (at 108, 75.4 and 66.4 μm in ~ June 2010, Dec 2010 and July 2011) and CH_4 . SR= 0.02, 0.04 and ~ 1 . 1 1 ~ μm . ~0.3h

spectrally-resolved observation of H_2O at 557 GHz (18 cm⁻¹ or 538 μ m) and at 1097.4 GHz (273 μ m) in June 2010, Dec 2010 and June 2011, ~4h each time. SR ~10⁶

• All Titan observations are disk-averaged and have to be performed near maximum elongation

 H_2O

CH₄, CO, HCN

2.- Molecular Inventory with Herschel /PACS, SPIRE, and HIFI Numerous spectral emission features due to:

2.- Molecular Inventory with Herschel /PACS, SPIRE , and HIFI Numerous spectral emission features due to:

2.- Molecular Inventory with Herschel /PACS, SPIRE , and HIFI

Spectral emission features due to:

Five dedicated Water vapour line emission with Herschel/PACS and HIFI. Goal: vertical profile of H_2O

Morer Morer

Moreno et al. 2012

2.- Molecular Inventory with Herschel /PACS, SPIRE , and HIFI Spectral emission features due to: 0.04Ξ 0.03 0.02 0.08 Antenna temperature H_2O 0.018 0.07 0.020.016 0.06 0.0 0.05 Moreno et al. 2011 0.04 0.01 543 88 543.91097.36 1097.37 556.93 556.94 Frequency (GHz) Frequency (GHz)

350

400

450

500

150

200

250

300

50

100

Surprise: Unexpected detection of hydrogen isocyanide (HNC) → a specie not previously identified in Titan's atmosphere

550

600

650

700

Observed and best-fit simulated CO lines

Observations

For the [60-170] km range altitude

Consistent with other studies:

Facility	Value [ppm]	Reference
SPIRE	40±5	Courtin et al. 2011
CIRS	47±8	De Kok et al 2007
APEX	30 ⁺¹⁵ ₋₈	Rengel et al. 2011
SMA	51±4	Gurwell et al. 2012
PACS	49±2	Rengel et al. 2014
ALMA	46±2	Serigano et al. 2016

HCN vertical distribution Generated photochemically

 We scaled the distribution from the one by Marten et al 2002, computed the synthetic spectra for several factors, and calculated best-fit

The CIRS distribution misfits the PACS observations at 1- σ level Rengel et al. 2014

What is the vertical profile of H₂O? Can we disentangle the various sources?

1.27 ± 0.03 Best-fit volume mixing ratio

Water vertical distribution

- None of the previous water models provides an adequate simultaneous match to the PACS and HIFI observations
- A Photochemical models for water must be revised

Observations vs. previous models

Fig. 7. Synthetic spectra computed considering several previously proposed H_2O profiles: Coustenis et al. (1998), Hörst et al. (2008) (model D and model A), and rescaled versions of these models. None of the models provides an adequate simultaneous match to the PACS observation at 75 μ m (top) and HIFI at 557 GHz (bottom).

Determination of the abundance of the trace constituents: Water vertical distribution

essur e dependence law as $q = q_0 (p_0/p)^n$

 q_0 is the mixing ratio at the reference pressure level p_{o}

n = 0.49Column density: 1.2 (± 0.2) 10¹⁴ cm ⁻².

The S_a distribution is also compatible with the PACS lines from the full scan: computations of the synthetic spectra with S_a (Moreno et al. 2012).

El2

Rengel et al. 2014

75.4

75.6

Oxygen-related Gas Composition of Titan's atmosphere: H₂O

 H_2O profile can be reproduced by invoking a OH/H₂O influx of (2.7-3.4) 10⁵mol cm⁻²s⁻¹

Reflects a temporal change in the oxygen influx into Titan

Determination of the abundance of the trace constituents: HNC

- HNC distribution: the bulk of HNC is located above 400 km

Models of the HNC line: constant mixing ratio above a given altitude

> 1000 kr	m	HNC (6-5)	Origin: reactions	
	1		$\begin{array}{rcl} \mathrm{HCNH}^{+} + \mathrm{e}^{-} & \rightarrow & \mathrm{HNC} + \mathrm{H} \\ & \rightarrow & \mathrm{HCN} + \mathrm{H} \end{array}$	(1a) (1b)
> 300 km	1		$\begin{array}{l} XH^{+} + HNC \rightarrow X + HCNH^{+} \\ HNC + H \rightarrow HCN + H \end{array}$	(2) (3)
> 200 km			$\begin{array}{rcl} CH_3 + HNC & \rightarrow & CH_3CN + H \\ & \rightarrow & CH_4 + CN \end{array}$	(4)
			Possible chemical	lifetime:
╻ ╛╼╤╣╪╣╒╧╤┩╸┥╪			$(1.4-5) \times 10^5 \mathrm{s}$	→we expect
			diurnal variations of	of HNC
			Is HNC restricted ionosphere?	to the
Best fits: Profile $\geq z$	X_0 (km) Mixing ratio	Column (cm ⁻²)		30
A B	$\begin{array}{llllllllllllllllllllllllllllllllllll$	6.3×10^{12} 6.9×10^{12}		

Moreno et al. 2011

Facility	Value	Reference
HIFI	4.5 ^{+1.2} _{-1.0} ppb	Moreno et al . 2011
ALMA	4.85 ± 0.28 ppb	Cordiner et al. 2014

Emission models that take into account the shapes of the resolved spectral line profiles confirm the result of Moreno et al. (2012) that HNC is predominantly confined to altitudes > 400 km.

Cordiner et al. 2014

4.- Isotopic ratios ¹²C/¹³C in CO and HCN

Isotopic ratio ¹²C/¹³C in CO

Ginzburg Centennial Conference on Physics - May 29-June 3, 2017, Moscow

T

Isotopic ratio ¹²C/¹³C in HCN

Isotopic ratios ¹⁴N/¹⁵N in HCN

Measurement	¹⁴ N/ ¹⁵ N	Reference
IRAM-30m	60-70	Marten et al. 2002
SMA	72 ± 9 or 94 ±13	Gurwell 2004
Cassini/CIRS	56 ± 8	Vinatier et al. 2007
Huygens/GCMS (in N_2)	183 ± 5	Niemann et al. 2010
Herschel/SPIRE	76 ± 6	Courtin et al. 2012
ALMA	72.3 ± 2.2	Molter et al. 2016

Photolytic fractionation of ¹⁴N¹⁴N and ¹⁴N¹⁵N

(Earth = 272)

Ferrestrial value: 272

Isotopic ratio ¹⁶O/¹⁸O in CO

Measurement	¹⁶ O/ ¹⁸ O	Reference
JCMT	~250	Owen et al. 1999 (never-published)
SMA	400 ± 41	Gurwell 2008 (unpublished)
Herschel/SPIRE	380 ± 60	Courtin et al. 2012
ALMA	414 ± 45	Serigano et al. 2016

- First documented measurement of Titan's ¹⁶O/¹⁸O in CO
- Value 24% lower than the Terrestrial ratio (Earth = 500)
- → $^{16}O/^{18}O$ depletion in Titan (enrichment of ^{18}O).

What is the origin?

Isotopic ratio ¹⁶O/¹⁸O in CO

Measurement	¹⁶ O/ ¹⁸ O	Reference
JCMT	~250	Owen et al. 1999 (never-published)
SMA	400 ± 41	Gurwell 2008 (unpublished)
Herschel/SPIRE	380 ± 60	Courtin et al. 2012
ALMA	414 ± 45	Serigano et al. 2016

- First documented measurement of Titan's ¹⁶O/¹⁸O in CO
- Value 24% lower than the Terrestrial ratio (Earth = 500)

→ $^{16}O/^{18}O$ depletion in Titan (enrichment of ^{18}O).

What is the origin?

Precipitation of O⁺ or O from the Enceladus Torus

Further investigations :

16**O/**18**O**

- evolution of oxygen on Titan
- Oxygen processes in Titan's atmosphere

5.- Conclusion

Herschel's Legacy

New Survey between 51 and 671 μm: CH₄, CO, HCN, H₂O, isotopes
Determination of abundances
Unexpected detection of HNC : Above 400 km, Titan's atmosphere also contains HNC

Measurement of ¹²C/¹³C and ¹⁶O/¹⁸O ratio

Emerged oxygen-related Implications:

 ¹⁸O enrichment in Titan's atmosphere: Precipitation of O⁺ or O from the Enceladus plume activity (¹⁶O/¹⁸O)

 We now know the content of water vapour in Titan (different as the predictions) and from where is coming from

Future – Synergy with Herschel

 CASSINI/CIRS (extended mission), until 2017. All flybys of Titan are done.
 Cassini Mission Overview Fur Year Plane Taylor Markov Markov Markov (Proposed), Mar 2014 - September 2017.

- Science Focus Group with key science themes:
 - Titan's composition of the middle atmosphere
 - Objectives: Long-term monitoring of the changing spatial distributions of gases, clouds and hazes —> reveal the interplay of chemistry and dynamics

Future – Synergy with Herschel

 ALMA : Titan's atmospheric chemistry/dynamics

SMA 850 micron unresolved observations

Gurwell 2004

- Search for more complex species
- 3D-mapping and monitoring: seasonal variations
- Dynamics/photochemistry coupling
- Direct measurement of mesospheric (500 km) winds
- Additional observations at higher angular resolution (up to 0.005") will allow for more accurate isotopic ratios and species abundances

HCN by SOFIA/FIFI-LS

Titan at 169 microns (continuum):

NIGTNA

• 30 min **Proposal 04_0093, P.I: Rengel** First observations of Titan with SOFIA! HCN (20-19) at 169.3 microns

observations on 26 February 2016

Acknowledgments

- HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U.Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronómico Nacional (IGN), Centro de Astrobiología (CSIC-INTA). Sweden: Chalmers University of Technology MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC.
- PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICT/MCT (Spain). Additional funding support for some instrument activities has been provided by ESA.
- SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA).