P.N.Lebedev Physical Institute of the Russian Academy of Sciences

GINZBURG CENTENNIAL CONFERENCE on PHYSICS

Investigation of Self-Organization Mechanisms In Non-Equilibrium Systems Using Block Model Approach

Andrey Polezhaev and Maxim Kuzhetsov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow

May 29 - June 3, 2017 Lebedev Institute, Moscow, Russia

Spatio-temporal patterns are widely spread in nature

Belousov-Zhabotinsky reaction dispersed in a water-in-oil aerosol OT microemulsion

 $R_w = 2nm$ HBrO₂ MA

Volume fraction of droplets $\varphi_{\rm d} = 0.3$

Overview of pattern formation in the BZ-AOT system

Patterns on combustion fronts 37692

Chemical Waves and Patterns, ed. R. Kapral and K. Showalter, Kluwer, Dordrecht, 1995

Aggregation of Dictyostelium discoideum

Pattern formation in bacterial colonies

Patterns formed by *E.coli* colonies

E. Budrene, H. Berg. Complex patterns formed by motile cells of Escherichia coli, Nature, 1991, v.345, p.630-633

Segmented waves in the BZ-AOT system

(a, b) Segmented spirals¹, (c, d) segmented waves² (dash waves) in the BZ-AOT system. Frame size (mm×mm) for (a, b) 3.72 ×4.82; for (c, d) 2.54×1.88. Time between (a) and (b) is 66 s; (c) and (d) is 1800 s.

¹ Vanag V.K., Epstein I.R. Segmented spiral waves in a reaction-diffusion system. //Proc. Natl. Acad. Sci. USA, 2003, v. 100, p. 14635
² Vanag V.K., Epstein I.R. Dash waves in a reaction-diffusion system. //Phys. Rev. Lett., 2003, v.90, p. 098301

Interaction of two coupled subsystems, one of which is excitable, and the other one has Turing instability

FitzHugh-Nagumo + Brusselator

$$\begin{cases} \frac{dU}{dt} = U - \frac{U^3}{3} - V + D_F \nabla^2 U, \\ \frac{dV}{dt} = (U - \gamma V + \delta)\varepsilon, \\ \frac{dX}{dt} = a - (b(U) + 1)X + X^2 Y + \nabla^2 X, \\ \frac{dY}{dt} = b(U)X - X^2 Y + D_B \nabla^2 Y, \end{cases}$$

 $b(u) = \begin{cases} b_c + \Delta \cdot U, & U \ge 0; \\ b_c, & U < 0. \end{cases}$ b_c - bifurcation value of the control parameter b

(Borina, Polezhaev, 2013)

FitzHugh-Nagumo + Brusselator

ФитцХью-Нагумо и Брюсселятор

(a, b) Formation of a single segmented spiral and (c, d) interaction of two segmented spirals in two-dimensional 200×200 system with zero flux boundary conditions.
Model parameters: ε=0.09, γ=0.5, δ=0.7, D_F=0.1, a=2, D_B=100, b_c=1.25, Δ=2.

FitzHugh-Nagumo + Brusselator

$$\begin{cases} \frac{dU}{dt} = U - \frac{U^3}{3} - V + D_F \nabla^2 U, \\ \frac{dV}{dt} = (U - \gamma V + \delta)\varepsilon, \\ \frac{dX}{dt} = a(U) - (b+1)X + X^2 Y + \nabla^2 X \\ \frac{dY}{dt} = bX - X^2 Y + D_B \nabla^2 Y. \end{cases}$$

 $a(u) = \begin{cases} a_c + \Delta \cdot U, & U \ge 0; \\ a_c, & U < 0. \end{cases} \quad a_c - \text{bifurcation value of the control parameter } a \end{cases}$

FitzHugh-Nagumo + Brusselator

(a, b) Formation of a segmented spiral and (c, d) interaction of two segmented spirals in two-dimensional 200×200 system with zero flux boundary conditions.
Model parameters: ε=0.09, γ=0.5, δ=0.7, D_F=0.1, b=2, D_B=100, a_c=4.2, Δ=-1.

FitzHugh-Nagumo + FitzHugh-Nagumo

$$\begin{split} & \left\{ \begin{aligned} \frac{dU}{dt} = U - \frac{U^3}{3} - V + D_1 \nabla^2 U, \\ \frac{dV}{dt} = \left(U - \gamma_1 V + \delta_1\right) \varepsilon, \\ \frac{d\widetilde{U}}{dt} = \left(\widetilde{U} - \frac{\widetilde{U}^3}{3} - \widetilde{V} + I(U) + D_2 \nabla^2 \widetilde{U}\right) \alpha, \\ \frac{d\widetilde{V}}{dt} = \left(\widetilde{U} - \gamma_2 \widetilde{V} + \delta_2 + \nabla^2 \widetilde{V}\right) \alpha. \end{split} \right. \\ & I(u) = \begin{cases} I_c + \Delta \cdot U, & U \ge 0; \\ I_c, & U < 0. \end{cases} \end{split}$$

 I_c – bifurcation value of the control parameter I

FitzHugh-Nagumo + FitzHugh-Nagumo

(a, b) Formation of a segmented spiral and (c, d) interaction of two segmented spirals in twodimensional 100×100 system with zero flux boundary conditions. Model parameters: ε =0.09, γ_1 =0.5, δ_1 =0.7, D_1 =0.1, γ_2 =0.5, δ_2 =0.5, D_2 =0.05, α =1, I_c =0.1, Δ =0.03.

FitzHugh-Nagumo + FitzHugh-Nagumo

(a, b) Formation of a segmented spiral and (c, d) interaction of two segmented spirals in twodimensional 100×100 system with zero flux boundary conditions. Model parameters: ε =0.09, γ_1 =0.5, δ_1 =0.7, D_1 =0.1, γ_2 =0.5, δ_2 =0.5, D_2 =0.05, α =5, I_c =0.1, Δ =0.03.

Oscillons in the BZ-AOT system

Turing patterns (a),(b), localized Turing patterns (c), and oscillons (d) –(f) in the Ru(bpy) - (a),(c),(e),(f) and ferroin - (b),(d) catalyzed BZ-AOT systems. Period of the oscillon is 47 s for (e),(f) and about 250 s for (d).

Vanag V. K., Epstein I. R. Stationary and Oscillatory Localized Patterns, and Subcritical Bifurcations. // Phys. Rev. Lett. — vol. 92(12), 2004. —128301.

Interaction of two coupled subsystems, one of which forms localized Turing patterns, and the other one is potentially oscillatory

$$\begin{aligned} \left\{ \begin{aligned} \frac{dU}{dt} &= -U(U+\alpha)(U-1) - V + D\nabla^2 U, \\ \frac{dV}{dt} &= U - V + \nabla^2 V, \\ \frac{dX}{dt} &= A - (B(U)+1)X + X^2 Y + D\nabla^2 X, \\ \frac{dY}{dt} &= B(U)X - X^2 Y + D\nabla^2 Y, \\ B(U) &= 1 + 2U. \end{aligned} \end{aligned}$$

Subcritical Turing bifurcation in the first subsystem takes place for sufficiently small diffusion coefficient *D*.

If *D*=0.001 then the bifurcation value of the parameter **a** is 0.0622.

(Kuznetsov, Polezhaev, 2015)

2D simulation (initial distribution)

2D simulation

Oscillations of the variable *X*. D = 0.001, $\alpha = -0.1$, A = 1, B = 1 + 2U.

Aggregation of Dictyostelium discoideum

Oscillations in cell suspension of D.discoideum

(Martiel, Goldbeter, 1987)

- cAMP is secreted by cells into the external environment in response to a cAMP signal;
- cAMP is hydrolyzed by extracellular phosphodiesterase;
- cAMP binds to receptors on the outer surface of the cell membrane;
- Synthesis of cAMP inside the cell is induced by binding of cAMP to receptors on the surface;
- Sensitivity of membrane receptors decreases with prolonged stimulation of intercellular cAMP.

Mathematical model

$$\begin{aligned} \frac{\partial v}{\partial t} &= \gamma u \left(g \frac{v^2 + A^2}{v^2 + 1} - \delta v \right) + D_v \Delta v, \\ \frac{\partial g}{\partial t} &= B - (1 + Hv)g, \end{aligned}$$

$$\frac{\partial u}{\partial t} = D_u \Delta u - \nabla \Big(\chi (g - g_0)^4 u \nabla v \Big).$$

(Polezhaev et al., 1998, 2005)

Thank you for attention!