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The Instanton Superpotential:

Let X be a Calabi-Yau threefold and C be a

curve in X. The general form of the superpotential induced by a string wrapping

Cis

o [ A) Pfaff (By,(_1))
W(C) = e"p[ Il ’/C B] [det’ (Do) ]2det(Dnc)

where A(C) is the area of the curve given by

A(C) = /Cu,
w is the on X and B is the antisymmetric heterotic two-form.
\Vis the on X, Oc¢(—1) isthe spin bundle on C

and we define
Ve(-1) = V]e®Oc(-1)

Then Pfaff(dy.(-1y) is the Pfaffian of the Dirac operator with gauge connection in

V restricted to C. = Pfaff(dyv(-1y) IS @ homogeneous polynomial in the vector

bundle moduli associated with V at curve C.



det(dyc) depends on the complex structure moduli. We, henceforth, ignore

the constant [det’(9p)]2,

In general, a given homology class of X contains more than one homogeneous,
isolated, genus zero curve. The number of these curves is called the Gromov-Witten
invariant. All such curves have the same area, the same classical action and the
same exponential prefactor. However, the one-loop determinants which determine

the Pfaffian and det(dy¢) are, in general, different. = the superpotential from all

such curves in the

K Piaff(y,, (1))
V([C]) —C‘\P[ ;’(ra / ]Z [detdoc (I)I]J

where nyq is the Gromov-Witten invariant of [C]. Therefore the complete

superpotential on X is

W= Y w(c])

[CleHs



The Beasley-Witten Theorem:

Let X be a CICY threefold in a product of projective spaces A = P x ---

That is, it is defined by polynomial equations
pt =0,...,pm = 0 where Y ;_,ni —m = 3.
Furthermore, assume that
wg =walg and V=Yg

Then the Beasley-Witten theorem = for any homology class [C]

_ A(C) <2 Paff By, (- lJ)
V(e e\p[ 2ma/ / ] Z [detdoC (-2 =0

and, hence

W= Y w(c]) =0

[CleHa

X Pna

This = that such vacua can never develop a potential for the vector bundle

moduli. A big problem! Is it possible to get around this? YES!



Quotient Threefolds with Torsion:

Consider a CICY X that admits a freely acting finite isometry . Construct the

qguotient threefold £

r

X —=
Such manifolds can, and often do, have “discrete torsion”. That is
Hy(X,Z) =ZF & G, k>0

G,,r isthe with r generators fBy,...., 3, .

Consider any curve holomorphic, isolated, genus zero curve C; in [C].

This can be associated with the G,,, group character

r
Bal(Cs)
(g,\a

It follows that the complete instanton superpotential associated with [C] is now

W((C)) = exp|

n[C) r l
/B Z Pf&ff C‘( 1) H\go(cl)
[detdoc,-1)]* 1%



. X. .
Since X = 18 no longer a CICY of the ambient space A = P x --- x P",

nor is

wX:wA’X and V:V’X

generically true. Hence,the Beasley-Witten theorem no longer applies

}

B A(C) 39 Pfaff(5 o (-1) T
W ([C]) = exp[ - T / ] Z [detaoc( 1)] H o)

and it is possible that

and, hence,

W= > w(c) #0

[CleHa

We now show in a physically relevant example that this is indeed the case!



A Schoen Threefold:
Consider the
A = P! x P? x P2

with homogeneous coordinates
([to : t1],[zo : z1: mo], [yo : y1 : o)) € P! x P? x P?
Define the CICY space X using the two polynomial equations

p1 = to(zh + 23 + 23) + t1(zozy29) = 0,
p2 = (Mito +t1) (5 + ¥i +y2) + (Aato + Aat1) (yoy1ye) = 0
This threefold is self mirror with pt:1 = 21 = 19 . Note that
RMY(X) > ' (A) =3
which already the Beasley-Witten assumption that wyg = wyl 5 .

However, this aspect of Beasley-Witten violation is hard to use to compute

the instanton potential.



Each polynomial equation defines a rational elliptic surface
dPy € P! x P?

= Xis a double elliptic fibration over P! That s,

,‘,/X\,:,

dimec =2: dPy =B By = dPy

N

dimec =3:

dimec=1:
Note that X is invariant under the actions

r[;IT() : Ty 1 o+ [T 1 (2 (o)
g1: A [to: t1] — [to : t1] (no action)
[0 2 y1 2 9] = [y0 2 Cyn = Py
r[zo : 1 1 To) > [z 1 29t o)
g2t { [to: t1] — [to : t1] (no action)
([0 : 912 9o = [y1: 92 : %],

where ( = e*™/3 Thatis, X has the finite isometry group

[ =Z3®Zs



Note that X is a specific example of a so-called Schoen threefold.
We can now define the quotient threefold
X = X/(Z3 x Zs)
Again, this threefold is self mirror, but now with hl! = p2! = 3 . The second
homology group is found to be

H(X,Z)=7*® L3 ® Ly
=
C;tor — ZB X Z3

’1|:><jz

As discussed above, X = is no longer a CICY of the ambient space

A=P xP?xP? noris
WX:CUA|X and V:V‘X

generically true. Hence, the Beasley-Witten theorem no longer applies.

What are the classes in the second homology group on X?



Recall that Ha(X,Z) = Z* & Zs & Zs . Label the generators of Z* as

p= ¢l
2

g= el
3

- e:T

Then, any class of the second cohomology group of X can be written as

[C] = (n1,n2,n3,m1,m2) € Ho(X,Z) = 2>  Zs B Z3

where mn1,n2,n3 are non-negative integers and myi,me = 0,1,2. Can one

compute the Gromov-Witten invariants in each such cohomology class?

Yes, using the mirror symmetry of the quotient threefold X.



Taking n; = 1, we find that

\M"'B 0 1 2 3 4 5
0 @ 4 14 40 105 252
1|4 16 5 160 420 1008
2 | 14 56 196 560 1470 3528
3 |40 160 560 1600 4200 10080
4 [105 420 1470 4200 11025 26460
5 252 1008 3528 10080 26460 63504

Table: instanton numbers for arbitrary mq, ma.

Note that each of the (1,0,0,m1,m2) classes has only a single homogeneous,
isolated, genus zero curve and, hence, the instanton superpotential in each such
class cannot cancel via the Beasley-Witten theorem. If there had

had been on the quotient X, then the class (1,0,0) would

have contained 9 curves. These might have canceled against each other.

We now compute the instanton superpotential for each (1,0, 0, m1, m2) class.



To do this, we must have an of these curves. To begin,
consider the 9 curves in Hy(X,R); that is, Hy(X,Z) ignoring torsion.

The pre-image of these in X are 81 holomorphic, isolated, genus zero curves.

These arise as P! x the 9 X 9=81 points solving the equations

Torizo =0, z4+2i+25=0, yoyva=0, yo+vi+vs=0
on P2 xP2. Since these 81 points are distinct, it follows that these curves are
indeed isolated. Due to the Zs x Zs symmetry, these 81 curves
under the action of Zs x Z3 — each orbit containing 9 curves. When one descends
to the quotient space X, all curves in one orbit become a single isolated curve.
Hence, one obtains the 9 curves in Hy(X,R) which split into the 9 different torsion
classes (1,0,0,m1,ms).
To explicitly compute the superpotential of due to these curves, it is essential
that we have an explicit representation of one curve in each of the nine Zsz x Zs

orbits in X.



To do this first consider the representations

10 0 010
g=10 ¢ 0}, g@=10 01
0 0 & 1 00

of the two generators of Zs x Zs acting on [zo : =1 : z2] and [yo : v1 : v2] .

Combine these spaces into a six-vector, and consider the

sy =(1,-1,0,1,—1,0)T
It corresponds to the curve

Ci=P'xs;=[tg:t]x[1:=1:0]x[1:—-1:0] c X c P! x P? x P?

We now construct the remaining 8 curves C; =P! x s;,i=2,...,9 as

0 1 0 0 1 0
Sp = (%1 1) 81, S3= (0 gl> S1, S4= (%2 1) 81, S5= (0 g2) S1,
_ (9192 0 . 1 0 [N 0 (92 0
Sg = < 0 1) S1, St = <0 glg2) S1, Sg — <0 0 81, Sg = 0 o S1

The curves cannot be obtained from one another by the action of Zs x Zs and,

hence, each defines one of the 9 orbits on X.



The Vector Bundle:
The vector bundle V on X will be defined by “extension” from 3 line bundles
Li, Ly, Ly on X satisfying the property that

L ® Ly ® Ly = Oy

Define V as the

s L —s W —s Ly —3 0
0—W —V —Ly—0

Explicitly, we will assume that

Ly = OX(—QC) + 211 + 7'2) s
L2 - OX(TI - TQ) 3
L3 = OX(Q(D — 37-1)

For V to have structure group SU(3), it must have a non-trivial space of extensions

HY(X,Ly®L}) and HY(X,W ® L}
We find that
(X, LioL) =18 , h'Y(X,W ® L) = 117



Finally, the “moduli space” of V is given by

M(V)=PH'(X,Li® L) + PH'(X, W ® L})
and, hence,

dimM (V) =(hY(X, Ly ® L) -1) + (K" (X, W @ L%) — 1)
=17 + 116 = 133

Note that if we consider the quotient vector bundle V on X, then
(X, Ly®L;) = 18/9 = 2, KW' (X, W®L}) = 117/9 =13

It follows that
dmM((V)=1+12=13

and, hence, there are 13 vector bundle moduli on the quotient space.

Does the vector bundle V on X from a bundle Y on the ambient

space A? Yes. One simply carries out the identical construction using

Ly =04(-2,2,1), Lo=040,1,—1), L3=04(2,-3,0)



Perhaps not surprisingly, on can show that

HY(X,Li ® L3) = H'(A, L1 ® £3) = H'(A,04(-2,1,2))
and also that

HY (AW L) _ H'Y(A,04(—4,5,1))
Fi-H(AWN*®L;) Fi-H'(A04(-5,2,1))

H'(X,W®Lj) =

The ambient space description allows us to parameterize the moduli

that on X. From the Kunneth and Bott formulas, it follows that
HI(A, O.A(_4: 5: 1)) - HI(PI: OPI(_4)) ® HO(P2 X PQ: OPQXP’?(Sa 1))

Note that
HI(IPlv OPI (_4)) = HO(Plv OPI (2))*

is 3-dimensional with a natural basis {72, 77,7} dual to the basis {t2, t5t;, 3}
of degree 2 polynomials on P1. Hence, any element v € H(A, O 4(—4,5,1))

can be written as

vV = Tgfl (X, }’) + TOTIfQ(xa Y) + ‘T‘%fg(x, Y)



where f1, f2, f3 are homogeneous polynomials of degree (5,1) on P2xP?2.
The coefficients of the polynomials fi, fa2, f3 can be viewed as the coordinates,
that is, the moduli, on H'(A,04(—4,5,1)). Let us now restrict to polynomials

that are invariant under Zs x Zs . A basis for such polynomials is given by

Ey = x3yo + 27y + 1300,

Es = a:gzil”yg — Ifargyl + m%xgyg ,

E3 = z3x3yo + 23120y1 + T3TYs

Ey = z32129Y0 + T1ToT0Y1 + T3T0T1Y,
Es = xi‘IQ’!/o + ffgifoyl + Igfvﬂh ’

Eg = T3yo + T3y + T3Y2,

1 1 1
Er; = 2175Yp + T22oy1 + ToZ1Y2 -

The invariant polynomials are then given by

7 7 7
fi=) aEa,  fo=) baBa, fi=) caFa
a=1 a=1 a=1

Note that there are 21 coefficients (aq, ba, ca) . However, one must mod out

Fl ’ HI(A3 OA(_5'2~ 1))



in H'(X,W ® L3) . The result is the constraints

a1 +ay+a3=0, as+as+as=0,
as+by+bs+b3=0, ay+by+bs+b=0,
b4+Cl+CQ+C'3:O,

C4:0, C7=0.

b7+C4+C5+06 :0,
We can choose the 13 coordinates

a1, a9, as, by, ba, b3, bs, b, €1, €2, €3, C5, Cg

as independent parameters. It follows that
dim PHY (X, W ® L}) = 13-1= 12

That is, there are 12 moduli of this type on V and they are parameterized by
ar,ag, as, by, be, b3, bs, be, c1, ¢a, 3, ¢5, €6 as projective coordinates.

Similarly, we can show that
dim PHY(X, L ® L) = 2-1=1

However, this modulus does not appear in the Pfaffians and we will ignore it.



Computation of the Pfaffians:
In the following, | will of our calculations. First, for an

arbitrary homogeneous, isolated, genus zero curve we find

(

Paff ¢ (Bro(-1) ~ (fifs — f3)(,¥) = Y (0aCs — babs) EaE5(x,y)

a.B=1
Applying this to our nine curves s;,¢ =1,...,9 and denoting

Ri,=(fifsi—f2)(s:), i=1,...,9

we find that
Riq=—(2b1 — by — b3)? + (2a1 — ay — a3)(2¢c; — g — c3)
R 5= —(by +b3C* + b1€)* + (a2 + as¢® + a1¢) (2 + e3¢ + e1()
Ry 3 =—(b2 +b3C + 0:1¢*)* + (a2 + as¢ + a1(?) (2 + 3¢* + e1(),
Ris= —(=by + by + b5 —bg)> + (—a; + a3 + a5 — ag)(—c; +c3 +¢5 — cg)
Rygs=—(=by +by — b5+ bs)* + (—ay + ay — a5 + ag)(—¢; + ¢ — ¢5 + ¢6)
Ry e =—(=b1+bs+ (bs — b6)C?)* + (a1 + az + (a5 — a6)C*)(—c1 + s + (c5 — ¢6)C?)
Ry =—(=b1 +by— (bs — b6)¢?)* + (—a1 + a2 — (a5 — ag)¢*)(—c1 + 2 — (e5 — ¢6)¢?)
RX 8 - ( ) 5
—(= )

(
—b1 + by — (bs — b6)¢)* + (—a1 + as — (a5 — ag)¢)(—c1 + 2 — (e
(

)¢
c)C) ,
by + b3 + (bs — bg C)2+(—a1+a3+(a5—a6)()(—cl+03+(05—06) )

0).

XQ_

where (= e*™/3.



Introducing a constant coefficient A ; for every curve, then each Pfaffian

is really

Pfaff ; ((%—ci 1) = A% Rz,

for i=1,...,9. However, the Beasley-Witten theorem obliquely introduces

the constraints that

AX,l = _A)'(,-4 - A)?,sa
A}E,Q = em/BAXA - A)'(,? 5
Agy=—eTPAz s+ e ™Az — Ags),
Ax,e = AXA + Ax,s - AX,?:

Agg = em/BAX,S _ ezm/sAXJ’
Ago=Ag +e ™Az — Ag ).

7

Since we have restricted the polynomials fi, fa; f3 to be Zs x Zs invariant,
all of these results apply directly to the quotient space X and the quotient vector

bundle V. Using the expression for the sum over the nine torsion homology

discussed previously, we find that



Wx([C]) = lepraﬁX (O, (—1))X
i=1

where
Pfa.ffx(avc (- 1)) AX zRX,i

and

It follows that

([C] ZTI Z Xi AX zRX i

i=1

This does not vanish due to the Zg X Zg characters Xi . For example, choosing

— 62711/37 — e47r2/3

X1=X2=X3=1 Xa=X5=Xs X7 = X8 = Xo

it follows that

3 6 9
W ([C]) = €T’ (z AxiRx; +e™/3 Z Ax Ry + €e'™? Z Rx,i) # 0

i=1 i=4 i=7

This cannot vanish due to all the previous constraints!



