Dirac fermions in arbitrary external classical fields: quantum spin dynamics

Yuri N. Obukhov

Theoretical Physics Laboratory, IBRAE, Russian Academy of Sciences

Ginzburg Centennial Conference on Physics, Lebedev Institute, Moscow, 02 June 2017

Based on joint results with O. Teryaev and A. Silenko (JINR)

イロト イポト イヨト イヨト

Outline

- Relativistic particles in curved spacetimes
 - Dynamics of spin and equivalence principle
 - Geometry of spacetime
- 2 Spin $\frac{1}{2}$ particle in curved spacetime
 - Dirac Hamiltonian for arbitrary metric
 - Electrodynamics in curved spacetime
 - Foldy-Wouthuysen Hamiltonian and equations of motion
- Classical and quantum spin: comparison
 - Classical spin in external fields
 - Spin in the gravitational field
 - 4 Conclusions and Outlook

・ 同 ト ・ 三 ト ・

Dynamics of spin and equivalence principle Geometry of spacetime

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dynamics of spin and equivalence principle

- High-energy experiments take place in curved space or in noninertial frame (for example, on Earth)
- Equivalence principle (EP) a cornerstone of gravity
- Newton's theory ⇒ Einstein's "falling elevator"
- Colella-Overhauser-Werner (1975) and Bonse-Wroblewski experiments EP for quantum-mechanical systems:
- Measured phase shift due to inertial and gravitational force
- Gravity on spin: EP for relativistic particles?
- Classical theory of spin: Frenkel (1928), Mathisson (1937), Papapetrou (1951), Weyssenhoff-Raabe (1947)
- Compare classical rotator and quantum spin
- Relativistic spin effects not measured yet!

Dynamics of spin and equivalence principle Geometry of spacetime

Arbitrary Riemannian geometry in 4 dimensions

• Let t be time, x^a (a = 1, 2, 3) be spatial coordinates:

$$ds^2 = V^2 c^2 dt^2 - \delta_{\widehat{a}\widehat{b}} W^{\widehat{a}}{}_c W^{\widehat{b}}{}_d \left(dx^c - K^c c dt \right) \left(dx^d - K^d c dt \right)$$

V and K^a , and 3×3 matrix $W^{\widehat{a}}{}_b$ depend arbitrarily on t, x^a .

- Their number 1 + 3 + 9 = 13 but rotation $W^{\hat{a}}_{b} \longrightarrow L^{\hat{a}}_{\hat{c}} W^{\hat{c}}_{b}$ is allowed with arbitrary $L^{\hat{a}}_{\hat{c}}(t, x) \in SO(3) :\Longrightarrow 13 3 = 10$
- Coframe e_i^{α} with $g_{\alpha\beta}e_i^{\alpha}e_j^{\beta} = g_{ij}$, $g_{\alpha\beta} = \text{diag}(c^2, -1, -1, -1)$:

$$e_i^{\hat{0}} = V \,\delta_i^0, \qquad e_i^{\hat{a}} = W^{\hat{a}}{}_b \left(\delta_i^b - cK^b \,\delta_i^0\right), \qquad a = 1, 2, 3$$

Exact metric of flat spacetime in noninertial frame

$$V = 1 + \frac{\boldsymbol{a} \cdot \boldsymbol{r}}{c^2}, \quad W^{\widehat{a}}{}_b = \delta^a_b, \quad K^a = -\frac{1}{c} (\boldsymbol{\omega} \times \boldsymbol{r})^a$$

Dirac Hamiltonian for arbitrary metric Electrodynamics in curved spacetime Foldy-Wouthuysen Hamiltonian and equations of motion

Dirac particle in gravitational & electromagnetic field

• Fermion with moments (AMM $\mu' = \frac{(g-2)e\hbar}{4m}$ & EDM $\delta' = \frac{be\hbar}{2mc}$) $\left(i\hbar\gamma^{\alpha}D_{\alpha} - mc + \frac{\mu'}{2c}\sigma^{\alpha\beta}F_{\alpha\beta} + \frac{\delta'}{2}\sigma^{\alpha\beta}G_{\alpha\beta}\right)\psi = 0$

• Spinor covariant derivative (with $\sigma_{\alpha\beta} = i\gamma_{[\alpha}\gamma_{\beta]}$)

$$D_{\alpha} = e^{i}_{\alpha}D_{i}, \qquad D_{i} = \partial_{i} - \frac{ie}{\hbar}A_{i} + \frac{i}{4}\sigma^{\alpha\beta}\Gamma_{i\,\alpha\beta}$$

Connection for general spacetime geometry

$$\Gamma_{i\,\widehat{a}\widehat{0}} = \frac{c^2}{V} W^b{}_{\widehat{a}} \partial_b V e_i{}^{\widehat{0}} - \frac{c}{V} \mathcal{Q}_{(\widehat{a}\widehat{b})} e_i{}^{\widehat{b}},$$

$$\Gamma_{i\,\widehat{a}\widehat{b}} = \frac{c}{V} \mathcal{Q}_{[\widehat{a}\widehat{b}]} e_i{}^{\widehat{0}} + \left(\mathcal{C}_{\widehat{a}\widehat{b}\widehat{c}} + \mathcal{C}_{\widehat{a}\widehat{c}\widehat{b}} + \mathcal{C}_{\widehat{c}\widehat{b}\widehat{a}}\right) e_i{}^{\widehat{c}}$$

• Here anholonomity $C_{\hat{a}\hat{b}}^{\hat{c}} = W^{d}_{\hat{a}}W^{e}_{\hat{b}}\partial_{[d}W^{\hat{c}}_{e]}$ and $Q_{\hat{a}\hat{b}} = g_{\hat{a}\hat{c}}W^{d}_{\hat{b}}\left(\frac{1}{c}\dot{W}^{\hat{c}}_{d} + K^{e}\partial_{e}W^{\hat{c}}_{d} + W^{\hat{c}}_{e}\partial_{d}K^{e}\right)$

Dirac Hamiltonian for arbitrary metric Electrodynamics in curved spacetime Foldy-Wouthuysen Hamiltonian and equations of motion

Dirac Hamiltonian

0

• Naive Hamiltonian is not Hermitian. Rescale wave function $\psi \longrightarrow \left(\sqrt{-g}e_0^0\right)^{\frac{1}{2}}\psi$ and recast Dirac wave equation into Schrodinger form $i\hbar\frac{\partial\psi}{\partial t} = \mathcal{H}\psi$

Dirac Hamiltonian (with $\mathcal{F}^{b}{}_{a}=VW^{b}{}_{\widehat{a}}$ and $\pmb{\pi}=-i\hbar \pmb{\nabla}-e\pmb{A}$)

$$\begin{aligned} \mathcal{H} &= \beta m c^2 V + e \Phi + \frac{c}{2} \left(\pi_b \mathcal{F}^b{}_a \alpha^a + \alpha^a \mathcal{F}^b{}_a \pi_b \right) \\ &+ \frac{c}{2} \left(\mathbf{K} \cdot \mathbf{\pi} + \mathbf{\pi} \cdot \mathbf{K} \right) + \frac{\hbar c}{4} \left(\mathbf{\Xi} \cdot \mathbf{\Sigma} - \Upsilon \gamma_5 \right) \\ &- \beta V \left(\mathbf{\Sigma} \cdot \mathbf{\mathcal{M}} + i \mathbf{\alpha} \cdot \mathbf{\mathcal{P}} \right) \end{aligned}$$

• Here
$$\beta = \gamma^{\widehat{0}}, \alpha^a = \gamma^{\widehat{0}}\gamma^{\widehat{a}}, \gamma_5 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix},$$

$$\Upsilon = V \epsilon^{\widehat{a}\widehat{b}\widehat{c}} \Gamma_{\widehat{a}\widehat{b}\widehat{c}} = -V \epsilon^{\widehat{a}\widehat{b}\widehat{c}} \mathcal{C}_{\widehat{a}\widehat{b}\widehat{c}}, \qquad \Xi_{\widehat{a}} = \frac{V}{c} \epsilon_{\widehat{a}\widehat{b}\widehat{c}} \Gamma_{\widehat{0}}^{\widehat{b}\widehat{c}} = \epsilon_{\widehat{a}\widehat{b}\widehat{c}} \mathcal{Q}^{\widehat{b}\widehat{c}}$$

Dirac Hamiltonian for arbitrary metric Electrodynamics in curved spacetime Foldy-Wouthuysen Hamiltonian and equations of motion

Electrodynamics in curved spacetime

- Gravity is universal: affects also electromagnetism. How?
- Basic objects: field strength F, excitation H and current J

Maxwell's theory – without coordinates and frames

dF = 0, dH = J, $H = \lambda_0 \star F,$ $\lambda_0 = \sqrt{\varepsilon_0/\mu_0}$

• Coordinates
$$x^i$$
: $F = \frac{1}{2}F_{ij}dx^i \wedge dx^j$, $H = \frac{1}{2}H_{ij}dx^i \wedge dx^j$,
and $J = \frac{1}{6}J_{ijk}dx^i \wedge dx^j \wedge dx^k$ are $(1+3)$ decomposed:
 $E_a = \{F_{10}, F_{20}, F_{30}\}, \quad B^a = \{F_{23}, F_{31}, F_{12}\}$
 $H_a = \{H_{01}, H_{02}, H_{03}\}, \quad D^a = \{H_{23}, H_{31}, H_{12}\}$
 $J^a = \{-J_{023}, -J_{031}, -J_{012}\}, \quad \rho = J_{123}$

• Maxwell equations are recast into standard form

Dirac Hamiltonian for arbitrary metric Electrodynamics in curved spacetime Foldy-Wouthuysen Hamiltonian and equations of motion

<ロ> <四> <四> <四> <三</td>

• Gravity/inertia encoded in *constitutive relation* H = H(F)

$$D^{a} = \frac{\varepsilon_{0}w}{V} \underline{g}^{ab} E_{b} - \lambda_{0} \frac{w}{V} \underline{g}^{ad} \epsilon_{bcd} K^{c} B^{b},$$

$$H_{a} = \frac{1}{\mu_{0}wV} \left\{ (V^{2} - K^{2}) \underline{g}_{ab} + K_{a} K_{b} \right\} B^{b} - \lambda_{0} \frac{w}{V} \epsilon_{adc} K^{c} \underline{g}^{db} E_{b}$$

Here
$$K_a = \underline{g}_{ab}K^b$$
, $K^2 = \underline{g}_{ab}K^aK^b$ and $w = \det W^{\widehat{c}}_d$.

- Frame e_i^{α} needed for fermions $\Longrightarrow F_{\alpha\beta} = e_{\alpha}^i e_{\beta}^j F_{ij}$
- Components: $\mathfrak{E}_a = \{F_{\widehat{10}}, F_{\widehat{20}}, F_{\widehat{30}}\} \& \mathfrak{B}^a = \{F_{\widehat{23}}, F_{\widehat{31}}, F_{\widehat{12}}\}$
- Relation between holonomic and anholonomic fields

$$\mathfrak{E}_a = \frac{1}{V} W^b{}_{\widehat{a}} (\boldsymbol{E} + c\boldsymbol{K} \times \boldsymbol{B})_b, \quad \mathfrak{B}^a = \frac{1}{w} W^{\widehat{a}}{}_b \boldsymbol{B}^b$$

• Nonminimal coupling $-\beta V \left(\boldsymbol{\Sigma} \cdot \boldsymbol{\mathcal{M}} + i \boldsymbol{\alpha} \cdot \boldsymbol{\mathcal{P}} \right)$ governed by

$$\mathcal{M}^a = \mu' \mathfrak{B}^a + \delta' \mathfrak{E}^a, \qquad \mathcal{P}_a = c \delta' \mathfrak{B}_a - \mu' \mathfrak{E}_a/c.$$

Dirac Hamiltonian for arbitrary metric Electrodynamics in curved spacetime Foldy-Wouthuysen Hamiltonian and equations of motion

- Foldy-Wouthuysen transform needed to reveal physics
- FW Hamiltonian $\mathcal{H}_{FW} = \mathcal{H}_{FW}^{(1)} + \mathcal{H}_{FW}^{(2)}$. E.g. for Earth:
- with $\epsilon = \sqrt{m^2 c^4 + \pi^2 c^2}$ and $\mathcal{J} = \nabla \times \mathcal{M} + \frac{\partial \mathcal{P}}{c \partial t}$ we find

$$\mathcal{H}_{FW}^{(1)} = eta \epsilon + q \Phi - oldsymbol{\omega} \cdot (oldsymbol{r} imes oldsymbol{\pi}) - rac{\hbar}{2} oldsymbol{\omega} \cdot oldsymbol{\Sigma} - rac{q \hbar c^2}{4} \left\{ rac{1}{\epsilon}, oldsymbol{\Pi} \cdot oldsymbol{\mathfrak{B}}
ight\}$$

$$+\frac{q\hbar c^2}{8}\left\{\frac{1}{\epsilon(\epsilon+mc^2)},\left[\boldsymbol{\Sigma}\cdot(\boldsymbol{\pi}\times\boldsymbol{\mathfrak{E}}-\boldsymbol{\mathfrak{E}}\times\boldsymbol{\pi})-\hbar\boldsymbol{\nabla}\cdot\boldsymbol{\mathfrak{E}}\right]\right\},$$

$$egin{aligned} \mathcal{H}_{FW}^{(2)} &= & -rac{c}{4}iggl\{rac{1}{\epsilon}, \Big[\mathbf{\Sigma}\cdot(\pmb{\pi} imes \mathcal{P}-\mathcal{P} imes \pmb{\pi})-\hbar \mathbf{
abla}\cdot\mathcal{P}\Big]iggr\}-\mathbf{\Pi}\cdot\mathcal{M} \ &+ & rac{c^2}{4}iggl\{rac{1}{\epsilon(\epsilon+mc^2)}, \Big[(\mathbf{\Pi}\cdot\pmb{\pi})(\pmb{\pi}\cdot\mathcal{M})+(\mathcal{M}\cdot\pmb{\pi})(\mathbf{\Pi}\cdot\pmb{\pi})-\mathbf{\Pi}\cdot\mathbf{M}^2, \Big] iggr\} \end{aligned}$$

$$+\beta\frac{\hbar}{2}(\boldsymbol{\pi}\cdot\boldsymbol{\mathcal{J}}+\boldsymbol{\mathcal{J}}\cdot\boldsymbol{\pi})-\beta\frac{\hbar}{2c}\Big\{\big([\boldsymbol{\omega}\times\boldsymbol{r}]\cdot\boldsymbol{\nabla}\big),(\boldsymbol{\pi}\cdot\boldsymbol{\mathcal{P}})\Big\}\Big]\Big\}$$

• Here $\{,\}$ anticommutators, $\mathcal{T} = 2\epsilon^2 + \{\epsilon, mc^2V\}$, $\mathbf{\Pi} = \beta \mathbf{\Sigma}$,

This result is exact – no (weak field etc) approximations for V, W^â_b, K^a. Planck ħ is the only small parameter

Classical spin in external fields Spin in the gravitational field

Classical spin in external fields

Dynamics of spinning particle in external classical fields

$$\frac{dU^{\alpha}}{d\tau} = \mathcal{F}^{\alpha}, \qquad \frac{dS^{\alpha}}{d\tau} = \Phi^{\alpha}{}_{\beta}S^{\beta}$$

• Physical spin is defined in rest frame of particle $u^{\alpha} = \delta_0^{\alpha}$

• Local Lorentz transformation $U^{\alpha} = \Lambda^{\alpha}{}_{\beta}u^{\beta}$

$$\Lambda^{\alpha}{}_{\beta} = \left(\begin{array}{c|c} \gamma & \gamma v_b/c^2 \\ \hline \gamma v^a & \delta^a_b + (\gamma - 1)v^a v_b/v^2 \end{array}\right)$$

Dynamics of physical spin $s^{\alpha} = (\Lambda^{-1})^{\alpha}{}_{\beta}S^{\beta}$

$$\begin{aligned} \frac{ds^{\alpha}}{d\tau} &= \Omega^{\alpha}{}_{\beta}s^{\beta}, \\ \Omega^{\alpha}{}_{\beta} &= (\Lambda^{-1})^{\alpha}{}_{\gamma}\Phi^{\gamma}{}_{\delta}\Lambda^{\delta}{}_{\beta} - (\Lambda^{-1})^{\alpha}{}_{\gamma}\frac{d}{d\tau}\Lambda^{\gamma}{}_{\beta}. \end{aligned}$$

Classical spin in external fields Spin in the gravitational field

Mathisson-Papapetrou theory

In curved spacetime and electromagnetic field

$$\mathcal{F}^{\alpha} = -\Gamma_{\gamma\beta}{}^{\alpha} u^{\gamma} u^{\beta} - \frac{e}{m} g^{\alpha\beta} F_{\beta\gamma} u^{\gamma},$$

$$\Phi^{\alpha}{}_{\beta} = -\Gamma_{\gamma\beta}{}^{\alpha} u^{\gamma} - \frac{e}{m} g^{\alpha\gamma} F_{\gamma\beta}$$

$$-\frac{2}{\hbar} \left[M^{\alpha}{}_{\beta} + \frac{1}{c^2} \left(M_{\beta\gamma} u^{\alpha} u^{\gamma} - M^{\alpha\gamma} u_{\beta} u_{\gamma} \right) \right]$$

Spin is affected by force due to "polarization" tensor

$$M_{\alpha\beta} = \mu' F_{\alpha\beta} + c\delta' F_{\alpha\beta}^*.$$

- Dimensionless parameters $a = \frac{g-2}{2}$ and b characterize magnitude of AMM and EDM: $\mu' = a \frac{e\hbar}{2m}$ and $\delta' = b \frac{e\hbar}{2mc}$
- In (1+3)-decomposed form, we recover

$$M_{\widehat{0}\widehat{a}} = c\mathcal{P}_a, \qquad M_{\widehat{a}\widehat{b}} = \epsilon_{abc}\mathcal{M}^c$$

Classical spin in external fields Spin in the gravitational field

• Physical spin s precesses wrt rest frame: $rac{ds}{dt} = \mathbf{\Omega} imes s$

Spin dynamics on Earth (with $m{g} = - rac{GM}{r^3} m{r}, \gamma = 1/\sqrt{1-v^2/c^2}$)

$$\begin{split} \boldsymbol{\Omega} &= \frac{e}{m} \left\{ -\frac{1}{\gamma} \,\boldsymbol{\mathfrak{B}} + \frac{1}{\gamma+1} \frac{\boldsymbol{v} \times \boldsymbol{\mathfrak{E}}}{c^2} \right\} - \boldsymbol{\omega} + \frac{2\gamma+1}{\gamma+1} \frac{\boldsymbol{v} \times \boldsymbol{g}}{c^2} \\ &- \frac{2\mu'}{\hbar} \left\{ \boldsymbol{\mathfrak{B}} - \frac{\boldsymbol{v} \times \boldsymbol{\mathfrak{E}}}{c^2} - \frac{\gamma}{\gamma+1} \, \boldsymbol{v} \, \frac{\boldsymbol{\mathfrak{B}} \cdot \boldsymbol{v}}{c^2} \right\} \\ &- \frac{2\delta'}{\hbar} \left\{ \boldsymbol{\mathfrak{E}} + \boldsymbol{v} \times \boldsymbol{\mathfrak{B}} - \frac{\gamma}{\gamma+1} \, \boldsymbol{v} \, \frac{\boldsymbol{\mathfrak{E}} \cdot \boldsymbol{v}}{c^2} \right\} \end{split}$$

- Analysis of manifestations of terrestrial rotation and gravity in precision high-energy physics: *influence not negligible*
- E.g.: Earth's gravity produces same effect as deuteron's EDM of $\delta' = 1.5 \times 10^{-29} \ e \cdot cm$ in planned dEDM experiment with magnetic focusing (AGS proposal EDM Collaboration)

Classical spin in external fields Spin in the gravitational field

Comparison: quantum vs. classical dynamics

Quantum (semiclassical) precession velocity

$$\Omega_{(1)}^{a} = \frac{c^{2}}{\epsilon} \mathcal{F}^{d}{}_{c} p_{d} \left(\frac{1}{2} \Upsilon \delta^{ac} - \epsilon^{akl} V \mathcal{C}_{kl}{}^{c} + \frac{\epsilon}{\epsilon + mc^{2}V} \epsilon^{abc} W^{k}{}_{\widehat{b}} \partial_{d} V \right),$$

$$\Omega_{(2)}^{a} = \frac{c}{2} \Xi^{a} - \frac{c^{3}}{\epsilon(\epsilon + mc^{2}V)} \epsilon^{abc} Q_{(bd)} \delta^{dn} \mathcal{F}^{k}{}_{n} p_{k} \mathcal{F}^{l}{}_{c} p_{l}$$

Classical precession velocity

$$\begin{split} \Omega^{\widehat{a}} &= \frac{\gamma}{V} \left(\frac{1}{2} \Upsilon \, v^{\widehat{a}} - \epsilon^{abc} V \mathcal{C}_{\widehat{b}\widehat{c}}{}^{d} v_{\widehat{d}} + \frac{\gamma}{\gamma+1} \epsilon^{abc} W^{d}{}_{\widehat{b}} \, \partial_{d} V v_{\widehat{c}} \right. \\ &+ \frac{c}{2} \, \Xi^{\widehat{a}} - \frac{\gamma}{\gamma+1} \epsilon^{abc} \mathcal{Q}_{(\widehat{b}\widehat{d})} \frac{v^{\widehat{d}} v_{\widehat{c}}}{c} \end{split}$$

 1st comes from Dirac fermion theory; 2nd from Hamilton particle mechanics of Mathisson and Papapetrou

Classical spin in external fields Spin in the gravitational field

• Quantum (semiclassical) FW Hamiltonian

$$\mathcal{H}_{FW} = \beta \sqrt{m^2 c^4 V^2 + c^2 \delta^{cd} \mathcal{F}^a{}_c \mathcal{F}^b{}_d p_a p_b} + c \mathbf{K} \cdot \mathbf{p} + \frac{\hbar}{2} \mathbf{\Pi} \cdot \mathbf{\Omega}_{(1)} + \frac{\hbar}{2} \mathbf{\Sigma} \cdot \mathbf{\Omega}_{(2)}$$

Classical particle with spin

$$\mathcal{H}_{class} = \sqrt{m^2 c^4 V^2 + c^2 \delta^{cd} \mathcal{F}^a{}_c \mathcal{F}^b{}_d p_a p_b} + c \mathbf{K} \cdot \mathbf{p} + s_a \Omega^a$$

• Semiclassical velocity operator from $\frac{i}{\hbar}[\mathcal{H}_{FW}, \boldsymbol{x}]$:

$$\beta \frac{c^2}{\epsilon} \mathcal{F}^b{}_a p_b = v_a \qquad \Longrightarrow \qquad \delta^{cd} \mathcal{F}^a{}_c \mathcal{F}^b{}_d p_a p_b = \epsilon^2 v^2 / c^2$$

- Hence $\epsilon^2 = m^2 c^4 V^2 + \epsilon^2 v^2/c^2$, or $\epsilon = \gamma \, mc^2 \, V$.
- This yields a direct correspondence

$$\frac{\epsilon}{\epsilon + mc^2 V} = \frac{\gamma}{1 + \gamma}, \quad \frac{c^3}{\epsilon(\epsilon + mc^2 V)} \,\mathcal{F}^k{}_n p_k \mathcal{F}^l{}_c p_l = \frac{\gamma}{1 + \gamma} \,\frac{v_n v_c}{c}$$

Perfect agreement of quantum and classical dynamics!

Conclusions and Outlook

- Relativistic Dirac theory governs quantum dynamics of fermions (also with dipole moments) in curved spacetime
- Earlier results for weak field and stationary configurations [Obukhov, Silenko, Teryaev, Phys. Rev. D80 (2009) 064044; Phys. Rev. D84 (2011) 024025; Phys. Rev. D88 (2013) 084014; Phys. Rev. D90 (2014) 124068; Phys. Rev. D94 (2016) 044019] extended to arbitrary strong and timedependent gravitational, inertial and electromagnetic fields
- Exact Foldy-Wouthuysen transformation constructed
- Quantum and semiclassical equations of motion agree with classical Mathisson-Papapetrou theory of spin
- Possible applications include analysis of spin dynamics in (weak and strong) gravitational wave – new detectors?

Thanks !

Yuri N. Obukhov Quantum spin dynamics

ヘロト 人間 とくほとくほとう

E 990