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Relativistic particles in curved spacetimes
Dynamics of spin and equivalence principle
Geometry of spacetime

Dynamics of spin and equivalence principle

@ High-energy experiments take place in curved space or in
noninertial frame (for example, on Earth)

@ Equivalence principle (EP) - a cornerstone of gravity
@ Newton’s theory = Einstein’s “falling elevator”

@ Colella-Overhauser-Werner (1975) and Bonse-Wroblewski
experiments - EP for quantum-mechanical systems:

@ Measured phase shift due to inertial and gravitational force
@ Gravity on spin: EP for relativistic particles?

@ Classical theory of spin: Frenkel (1928), Mathisson (1937),
Papapetrou (1951), Weyssenhoff-Raabe (1947)

@ Compare classical rotator and quantum spin
@ Relativistic spin effects not measured yet!
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Relativistic particles in curved spacetimes
Dynamics of spin and equivalence principle
Geometry of spacetime

Arbitrary Riemannian geometry in 4 dimensions

@ Lett betime, 2 (a = 1,2, 3) be spatial coordinates:
ds® = V2t — aEVVECI/VECI (dz¢ — K¢cdt) (dz — K%cdt)

V and K¢, and 3 x 3 matrix W, depend arbitrarily on ¢, 2.
@ Their number 1 + 3 + 9 = 13 but rotation W%, — LA WW¢,

is allowed with arbitrary Lo:(t,z) € SO(3): = 13 — 3 = 10
@ Coframe ef* with gagef‘ef = Gij» Jap = diag(c?, —1,—1,—1):
eP:V(SiO, e = W9, (55?—ch51~0), a=1,2,3

@ Exact metric of flat spacetime in noninertial frame

: _ 1
Ve1+ ST Wi =g K= (wxr)
C C
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Dirac Hamiltonian for arbitrary metric
Electrodynamics in curved spacetime
Foldy-Wouthuysen Hamiltonian and equations of motion

Spin % particle in curved spacetime

Dirac particle in gravitational & electromagnetic field
o Fermion with moments (AMM ;/ = W2 g EDM ¢/ = bel)

2mce
! 5
(ifwaDa —mc+ ;LUQBFO& + 3¢ BGaﬁ)w =0
c

@ Spinor covariant derivative (with 0,5 = 7(,73))
Da:egDi, D; :ai—gAi—FzJaﬂFiaﬁ

I 4
@ Connection for general spacetlme geometry
b c b
anﬁ = V W?s 0bV ez V Q(ab) €,
C
Lab = ¥ Q[aE] + (Cog + Cazs + Caa) €

@ Here anholonomity C_;¢ = W3 W<, 0,,W*,; and
1.~ . N
Q= gasW (S W + K OW g+ WE0,K°)
C

Yuri N. Obukhov Quantum spin dynamics



Dirac Hamiltonian for arbitrary metric
Electrodynamics in curved spacetime
Foldy-Wouthuysen Hamiltonian and equations of motion

Spin % particle in curved spacetime

Dirac Hamiltonian

@ Naive Hamiltonian is not Hermitian. Rescale wave function
(F eA> 1 and recast Dirac wave equation into
Schrodmger form ih %Y = Hap

Dirac Hamiltonian (with 7, = VIW%; and m = —ihV — cA)

%:f@m02V+€¢+§(bebaaa+a“fba7rb)
+S(K w4 K)+ % (E-Z-Ty)
-8BV (- M+ia-P)

o
_ A0 oa_ A 0.a —( 0 -1 =(° °
@ Here g =1", —'Y’Y=’Y5_(,1 0)’2_(0 0'>’
T — Vabcl—\ — Ve abcc EA—KeA 1—\/\38_ ch
e = abe —a — c abc ™~ 0 abc
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Dirac Hamiltonian for arbitrary metric
Electrodynamics in curved spacetime
Foldy-Wouthuysen Hamiltonian and equations of motion

Spin % particle in curved spacetime

Electrodynamics in curved spacetime

@ Gravity is universal: affects also electromagnetism. How?
@ Basic objects: field strength F', excitation H and current .J

Maxwell’s theory — without coordinates and frames

dF:O, dH = J, H:)\o*F, )\0 = \/50/,&0

° Coordinates ah F = F,Jdac' Adad, H = LH;jdat A dad,

and J = = ”kda: A d:pﬂ A dzF are ( + 3) decomposed:
E, = {Fio, F20, F30}, = {3, I31, F1a}
H, = {Ho1, Ho2, Hoz}, D® = {Hj3, H31, H12}
° J = {—Joz3, — Jo31, — Jo12}, p = Ji23

@ Maxwell equations are recast into standard form
VxE+B=0, V.-B =0,

VxH-D=J, V-D=p



Dirac Hamiltonian for arbitrary metric
Electrodynamics in curved spacetime
Foldy-Wouthuysen Hamiltonian and equations of motion

Spin % particle in curved spacetime

@ Gravity/inertia encoded in constitutive relation H = H(F')

oW w
Dt — OTQGbEb B )\ngadebchc Bb,
1 w
H, = o {(V? = K?)gap + K K} B® — AOV €adc K gV )

Here K, = g K°, K? = g K°K® and w = det W¢,.
o Frame e needed for fermions = Fy3 = ei,c} F;

@ Components: €, = {Fy5, F55, F55) & B¢ = {53, 57, s}

@ Relation between holonomic and anholonomic fields

1 1. -
€= W (E + cK x B),, B°%= — we, B

@ Nonminimal coupling — gV (X - M + i - P) governed by
M = /B 5 e, Po=cd'B, — /€&, /c.
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Dirac Hamiltonian for arbitrary metric
Electrodynamics in curved spacetime
Foldy-Wouthuysen Hamiltonian and equations of motion

Spin % particle in curved spacetime

@ Foldy-Wouthuysen transform needed to reveal physics
o FW Hamiltonian # gy = M4, + HE),. E.g. for Earth:
o with € — vimZcT - 72 and JF = ¥ ><M+%7§wefind

Hg‘),v = ﬂe+q<1>—w-(r><7r)—§w~2 ghe® { T %}

2 4
th2 b TIs. _ _hY.
+ { Rt [2 (mx € — € x ) — hV cz]}
HE, = - 2{1 (FXP-Pxw)— hv-P]}—H-M
02

+Z{ (€+m62) [(Hﬂ')(ﬂ'M)Jr(Mﬂ)(Hﬂ.)

+05 (T + T w) — ] (o x r].v),(ﬂ-m}]}

@ Here {, } anticommutators, 7 = 2¢2 + {¢, mc*V'}, I1 = 8%,
@ This result is exact — no (weak field etc) approximations for
V, W, K. Planck # is the only small parameter
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Classical spin in external fields
Classical and quantum spin: comparison Spin in the gravitational field

Classical spin in external fields

@ Dynamics of spinning particle in external classical fields

au“ as®
— Fo = 2,98
dr F dr 85
@ Physical spin is defined in rest frame of particle u* = 6§

@ Local Lorentz transformation U = A% u®

o (e )

v | 6 + (v — Dvop/v?

Dynamics of physical spin s® = (A~1)2355

0% = (A_l)avqﬂéf\dﬁ_(A_l)aw%/wﬁ
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Classical spin in external fields
Classical and quantum spin: comparison Spin in the gravitational field

Mathisson-Papapetrou theory

@ In curved spacetime and electromagnetic field

F¢ = —Fwauwuﬁf%gaﬁqu'y,
e
% = —Dypu’ — — g% Fyp
2 «a 1 a, vy ay
~% M B—i-CfQ(Mmuu — M*Tugu,)

@ Spin is affected by force due to “polarization” tensor
Maﬁ = ,u’ Faﬁ +cd’
@ Dimensionless parameters a = 9_2 and b characterize
magnitude of AMM and EDM: 1/ = a £ and §' = b "

2mc
@ In (1 + 3)-decomposed form, we recover

Mﬁ?i = C'Pa, M&E = Eabc./\/lc
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Classical spin in external fields

Classical and quantum spin: comparison Spin in the gravitational field

@ Physical spin s precesses wrt rest frame: Z—j =0xs

Spin dynamics on Earth (withg = — S ¢ 4 =1/,/1 —«

r3

/ .
—2(5{€+vx%— il @v}

— v
vy+1 2

8 Analysis of manifestations of terrestrial rotation and gravity
in precision high-energy physics: influence not negligible

@ E.g.: Earth’s gravity produces same effect as deuteron’s
EDM of §' = 1.5 x 1072 e-cm in planned dEDM experiment
with magnetic focusing (AGS proposal EDM Collaboration)
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Classical spin in external fields
Classical and quantum spin: comparison Spin in the gravitational field

Comparison: quantum vs. classical dynamics

@ Quantum (semiclassical) precession velocity

2
a c d 1 ac akl c € abeyyrk
Q(l) = ?F cPd <2T5 — € VCk[ + mﬁ w b(?dV> N

a C —a 63 abe 5dnfk JT_‘l

2 =~ 9= e(e + mc2V) € Q(bd) nPkJS™ cPl

@ Classical precession velocity
a _ 1 a abc d g abeyyrd
Q = V <2T’U — € VC/I;E ’UCT—F ﬁG W gadV’UE

d
Coma_ T abey  VUC
+2H ")/J,-lE Q(bd) c )

@ 1st comes from Dirac fermion theory; 2nd from Hamilton
particle mechanics of Mathisson and Papapetrou
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Classical spin in external fields

Classical and quantum spin: comparison Spin in the gravitational field

@ Quantum (semiclassical) FW Hamiltonian

h h
Hrw=p \/m204V2+cQéCd]:“c]:bdpaprrcK'er51'1'9(1)+§2'9(2)
@ Classical particle with spin
Helass = \/m264v2 + CQ(SCdJ—'.ac]:bdpapb +cK -p+ 5482"

@ Semiclassical velocity operator from £[H pw, x]:

2
C
B— ]:bapb = Vq — (5Cdfac -depapb =€ UQ/C

° Hence €2 =m2cAV? 4 0?2/, or e = ymc? V.
@ This yields a direct correspondence

3
€ Yy C k 1 Y UnVc
= , F Fepp=——
e+m2V 1+ eletmev)’ "PRTPIT LT
@ Perfect agreement of quantum and classical dynamics!

Yuri N. Obukhov Quantum spin dynamics




Conclusions and Outlook

Conclusions and Outlook

@ Relativistic Dirac theory governs quantum dynamics of
fermions (also with dipole moments) in curved spacetime

@ Earlier results for weak field and stationary configurations
[Obukhov, Silenko, Teryaev, Phys. Rev. D80 (2009)
064044; Phys. Rev. D84 (2011) 024025; Phys. Rev. D88
(2013) 084014; Phys. Rev. D90 (2014) 124068; Phys. Rev.
D94 (2016) 044019] extended to arbitrary strong and time-
dependent gravitational, inertial and electromagnetic fields

@ Exact Foldy-Wouthuysen transformation constructed

@ Quantum and semiclassical equations of motion agree
with classical Mathisson-Papapetrou theory of spin

@ Possible applications include analysis of spin dynamics
in (weak and strong) gravitational wave — new detectors?

Yuri N. Obukhov Quantum spin dynamics



Conclusions and Outlook

Thanks !

Yuri N. Obukhov uantum spin d
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