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Dynamics of spin and equivalence principle

High-energy experiments take place in curved space or in
noninertial frame (for example, on Earth)
Equivalence principle (EP) - a cornerstone of gravity
Newton’s theory⇒ Einstein’s “falling elevator”
Colella-Overhauser-Werner (1975) and Bonse-Wroblewski
experiments - EP for quantum-mechanical systems:
Measured phase shift due to inertial and gravitational force
Gravity on spin: EP for relativistic particles?
Classical theory of spin: Frenkel (1928), Mathisson (1937),
Papapetrou (1951), Weyssenhoff-Raabe (1947)
Compare classical rotator and quantum spin
Relativistic spin effects not measured yet!
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Arbitrary Riemannian geometry in 4 dimensions
Let t be time, xa (a = 1, 2, 3) be spatial coordinates:

ds2 = V 2c2dt2 − δ
âb̂
W â

cW
b̂
d (dxc −Kccdt) (dxd −Kdcdt)

V and Ka, and 3× 3 matrix W â
b depend arbitrarily on t, xa.

Their number 1 + 3 + 9 = 13 but rotation W â
b −→ LâĉW

ĉ
b

is allowed with arbitrary Lâĉ(t, x) ∈ SO(3): =⇒ 13− 3 = 10

Coframe eαi with gαβeαi e
β
j = gij , gαβ = diag(c2,−1,−1,−1):

e 0̂i = V δ 0i , eâi = W â
b

(
δbi − cKb δ 0i

)
, a = 1, 2, 3

Exact metric of flat spacetime in noninertial frame

V = 1 +
a · r
c2

, W â
b = δab , Ka = −1

c
(ω × r)a
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Dirac particle in gravitational & electromagnetic field
Fermion with moments (AMM µ′= (g−2)e~

4m & EDM δ′= be~
2mc )(

i~γαDα −mc+
µ′

2c
σαβFαβ +

δ′

2
σαβGαβ

)
ψ = 0

Spinor covariant derivative (with σαβ = iγ[αγβ])

Dα = eiαDi, Di = ∂i −
ie

~
Ai +

i

4
σαβΓi αβ

Connection for general spacetime geometry

Γi â0̂ =
c2

V
W b

â ∂bV ei
0̂ − c

V
Q

(âb̂)
ei
b̂,

Γ
i âb̂

=
c

V
Q

[âb̂]
ei

0̂ +
(
C
âb̂ĉ

+ C
âĉb̂

+ C
ĉb̂â

)
ei
ĉ

Here anholonomity C
âb̂
ĉ = W d

âW
e
b̂
∂[dW

ĉ
e] and

Q
âb̂

= gâĉW
d
b̂

(1

c
Ẇ ĉ

d +Ke∂eW
ĉ
d +W ĉ

e∂dK
e
)
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Dirac Hamiltonian
Naive Hamiltonian is not Hermitian. Rescale wave function

ψ −→
(√
−ge0

0̂

) 1
2
ψ and recast Dirac wave equation into

Schrodinger form i~∂ψ∂t = Hψ

Dirac Hamiltonian (with Fba = VW b
â and π = −i~∇− eA)

H = βmc2V + eΦ + c
2

(
πbFbaαa + αaFbaπb

)
+ c

2 (K · π + π ·K) + ~c
4 (Ξ ·Σ−Υγ5)

−βV (Σ ·M + iα ·P)

Here β = γ0̂, αa = γ0̂γâ, γ5 =
(

0 −1
−1 0

)
, Σ =

(
σ 0
0 σ

)
,

Υ = V εâb̂ĉΓ
âb̂ĉ

= −V εâb̂ĉC
âb̂ĉ
, Ξâ =

V

c
ε
âb̂ĉ

Γ0̂
b̂ĉ = ε

âb̂ĉ
Qb̂ĉ
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Electrodynamics in curved spacetime
Gravity is universal: affects also electromagnetism. How?
Basic objects: field strength F , excitation H and current J

Maxwell’s theory – without coordinates and frames

dF = 0, dH = J, H = λ0 ?F, λ0 =
√
ε0/µ0

Coordinates xi: F = 1
2Fijdx

i ∧ dxj , H = 1
2Hijdx

i ∧ dxj ,
and J = 1

6Jijkdx
i ∧ dxj ∧ dxk are (1 + 3) decomposed:

Ea = {F10, F20, F30}, Ba = {F23, F31, F12}
Ha = {H01, H02, H03}, Da = {H23, H31, H12}

Ja = {− J023,− J031,− J012}, ρ = J123

Maxwell equations are recast into standard form
∇×E + Ḃ = 0, ∇ ·B = 0,

∇×H − Ḋ = J , ∇ ·D = ρ
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Gravity/inertia encoded in constitutive relation H = H(F )

Da =
ε0w

V
gabEb − λ0

w

V
gadεbcdK

cBb,

Ha =
1

µ0wV

{
(V 2 −K2)gab +KaKb

}
Bb − λ0

w

V
εadcK

c gdbEb

Here Ka = gabK
b, K2 = gabK

aKb and w = detW ĉ
d.

Frame eαi needed for fermions =⇒ Fαβ = eiαe
j
βFij

Components: Ea = {F1̂0̂, F2̂0̂, F3̂0̂} & Ba = {F2̂3̂, F3̂1̂, F1̂2̂}
Relation between holonomic and anholonomic fields

Ea =
1

V
W b

â(E + cK ×B)b, Ba =
1

w
W â

bB
b

Nonminimal coupling −βV (Σ ·M + iα ·P) governed by

Ma = µ′Ba + δ′Ea, Pa = cδ′Ba − µ′Ea/c.
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Foldy-Wouthuysen transform needed to reveal physics
FW Hamiltonian HFW = H(1)

FW +H(2)
FW . E.g. for Earth:

with ε =
√
m2c4 + π2c2 and J = ∇×M + ∂P

c∂t we find

H(1)
FW = βε+ qΦ− ω · (r × π)− ~

2
ω ·Σ− q~c2

4

{
1

ε
,Π ·B

}
+
q~c2

8

{
1

ε(ε+mc2)
,
[
Σ · (π ×E−E× π)− ~∇ ·E

]}
,

H(2)
FW = − c

4

{
1

ε
,
[
Σ · (π ×P −P × π)− ~∇ ·P

]}
−Π ·M

+
c2

4

{
1

ε(ε+mc2)
,
[
(Π · π)(π ·M) + (M · π)(Π · π)

+β
~
2

(π ·J + J ·π)− β ~
2c

{(
[ω × r] ·∇

)
, (π ·P)

}]}
Here { , } anticommutators, T = 2ε2 + {ε,mc2V }, Π = βΣ,
This result is exact – no (weak field etc) approximations for
V,W â

b,K
a. Planck ~ is the only small parameter
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Classical spin in external fields
Dynamics of spinning particle in external classical fields

dUα

dτ
= Fα, dSα

dτ
= Φα

βS
β

Physical spin is defined in rest frame of particle uα = δα0
Local Lorentz transformation Uα = Λαβu

β

Λαβ =

(
γ γvb/c

2

γva δab + (γ − 1)vavb/v
2

)
Dynamics of physical spin sα = (Λ−1)αβS

β

dsα

dτ
= Ωα

βs
β,

Ωα
β = (Λ−1)αγΦγ

δΛ
δ
β − (Λ−1)αγ

d

dτ
Λγβ
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Mathisson-Papapetrou theory
In curved spacetime and electromagnetic field

Fα = −Γγβ
α uγuβ − e

m
gαβFβγu

γ ,

Φα
β = −Γγβ

α uγ − e

m
gαγFγβ

− 2

~

[
Mα

β +
1

c2
(Mβγu

αuγ −Mαγuβuγ)

]
Spin is affected by force due to “polarization” tensor

Mαβ = µ′ Fαβ + cδ′ F ∗αβ.

Dimensionless parameters a = g−2
2 and b characterize

magnitude of AMM and EDM: µ′ = a e~
2m and δ′ = b e~

2mc

In (1 + 3)-decomposed form, we recover
M0̂â = cPa, M

âb̂
= εabcMc
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Physical spin s precesses wrt rest frame: ds
dt = Ω× s

Spin dynamics on Earth (with g = − GM
r3
r, γ = 1/

√
1− v2/c2)

Ω =
e

m

{
− 1

γ
B +

1

γ + 1

v ×E

c2

}
− ω +

2γ + 1

γ + 1

v × g
c2

− 2µ′

~

{
B− v ×E

c2
− γ

γ + 1
v
B · v
c2

}
− 2δ′

~

{
E + v ×B− γ

γ + 1
v
E · v
c2

}
Analysis of manifestations of terrestrial rotation and gravity
in precision high-energy physics: influence not negligible
E.g.: Earth’s gravity produces same effect as deuteron’s
EDM of δ′ = 1.5× 10−29 e·cm in planned dEDM experiment
with magnetic focusing (AGS proposal EDM Collaboration)
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Comparison: quantum vs. classical dynamics

Quantum (semiclassical) precession velocity

Ωa
(1) =

c2

ε
Fdcpd

(
1

2
Υδac − εaklV Cklc +

ε

ε+mc2V
εabcW k

b̂
∂dV

)
,

Ωa
(2) =

c

2
Ξa − c3

ε(ε+mc2V )
εabcQ(bd)δ

dnFknpkF lcpl

Classical precession velocity

Ωâ =
γ

V

(
1

2
Υ vâ − εabcV C

b̂ĉ
dv
d̂

+
γ

γ + 1
εabcW d

b̂
∂dV vĉ

+
c

2
Ξâ − γ

γ + 1
εabcQ

(̂bd̂)

vd̂vĉ
c

)
1st comes from Dirac fermion theory; 2nd from Hamilton
particle mechanics of Mathisson and Papapetrou
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Quantum (semiclassical) FW Hamiltonian

HFW=β
√
m2c4V 2+c2δcdFacFbdpapb+cK·p+

~
2
Π·Ω(1)+

~
2
Σ·Ω(2)

Classical particle with spin

Hclass =
√
m2c4V 2 + c2δcdFacFbdpapb + cK · p+ saΩ

a

Semiclassical velocity operator from i
~ [HFW ,x]:

β
c2

ε
Fbapb = va =⇒ δcdFacFbdpapb = ε2v2/c2

Hence ε2 = m2c4V 2 + ε2v2/c2, or ε = γ mc2 V .
This yields a direct correspondence

ε

ε+mc2V
=

γ

1 + γ
,

c3

ε(ε+mc2V )
FknpkF lcpl =

γ

1 + γ

vnvc
c

Perfect agreement of quantum and classical dynamics!
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Conclusions and Outlook

Relativistic Dirac theory governs quantum dynamics of
fermions (also with dipole moments) in curved spacetime
Earlier results for weak field and stationary configurations
[Obukhov, Silenko, Teryaev, Phys. Rev. D80 (2009)
064044; Phys. Rev. D84 (2011) 024025; Phys. Rev. D88
(2013) 084014; Phys. Rev. D90 (2014) 124068; Phys. Rev.
D94 (2016) 044019] extended to arbitrary strong and time-
dependent gravitational, inertial and electromagnetic fields
Exact Foldy-Wouthuysen transformation constructed
Quantum and semiclassical equations of motion agree
with classical Mathisson-Papapetrou theory of spin
Possible applications include analysis of spin dynamics
in (weak and strong) gravitational wave – new detectors?
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