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Two related topics

• Particle acceleration in relativistic astrophysical plasmas 
• Structure of pulsar winds (Crab Nebula)
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High energy sources: non-thermal particles, 
fast variability (= very fast acceleration)

Mrk 421 GRB light curve

blazar PKS 2155-304



Crab Nebula: the paragon of high 
energy sources
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Part I: The Crab Nebula we understand
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Crab flares
• Few times per year 
• Random 
• Flux increase by 40  
• 100 MeV - 1GeV 
• lasts for a day (<< dynamical time) 
!
!
!
!
!
!
!

• Shock acceleration is excluded
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Nearly monoenergetic!
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The synchrotron limit



Flares from Crab Inner Knot?
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Komissarov & Lyutikov 2011
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Crab Inner knot
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Rudy +, 2015

Scales ~ 0.5’’ (light day)



In the knot sigma is small!
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Polarization
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Inner knot: surface of relativistic shock

• Location: The knot is on the same side of the pulsar as the Crab jet, along the 
symmetry axis, on the opposite side as the brighter section of the Crab torus. 	

• Size: The knot size is comparable to its separation from the pulsar.  Only 
models with  σ < 1 agree	

• Elongation: The knot is elongated in the direction perpendicular to the 
symmetry axis.  Only models with  σ < 1 agree	

• Brightness peak: The observations indicate that the brightness peak is 
shifted in the direction away from the pulsar. 	

• Polarization: The knot polarization degree is high, and the electric vector is 
aligned with the symmetry axis.	

• Luminosity: Taking into account Doppler beaming, the observed radiative 
efficiency of the inner knot is fairly low << 1%.	

• Variability: The knot flux is anticorrelated with its separation from the pulsar.	

 Not a sight of gamma-ray flares.
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Pulsar winds: coming together of theory, 
simulations and observations
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Wind properties

• Knot: Thermal (!) spectrum, 
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�w = 3⇥ 104

Porth	+,	2017



PIC simulations of termination 
shock in striped wind

• Reconnection-mediated shock
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equator
mid-lat.unstriped

Sironi & Spitkovsky 2011

Only relativistic shocks with sigma < 10-2 !
 can accelerate non-thermal particles



Large-scale torus structure
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Komissarov & Lyutbarksy 2003

sigma <<1



Pulsar winds: coming together of theory, 
simulations and observations
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Highly magnetized wind
Reconnection mediated!
acceleration at Mach belt,!
Beff ~ 0, like sigma=0

Reconnection mediated!
termination shock

Just thermalization, Beff ~ large

High sigma regions,!
flares

Bogovalov 1999 
Komissarov+ 2003 
Porth+ 2014 
Sironi +, 2011 
Lyutikov+, 2016 
Yuan + 2016 

Striped equatorial zone

Prediction: Inner not will  not be seen in radio



Conclusion 1

We understand pulsar winds
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Ok, OK: We made an important progress in understanding pulsar winds



- Explosive reconnection and particle 
acceleration in relativistic plasmas 

What about flares?



Crab flares: very demanding 
conditions on acceleration

• Acceleration by E ~ B (energy gain & loss on one gyro radius) 
• on macroscopic scales >> skin depth 

• acceleration size ~ thousands skins 
• acceleration size ~0.1 -1 of the system size (in Crab) 

• Few particles are accelerated to radiation-reaction limit - 
gamma ~ 109 for Crab flares (NOT all particles are 
accelerated) 

• Slow accumulation of magnetic energy, spontaneously 
triggered dissipation 

• (relativistic bulk motion)
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Explosive Reconnection in relativistic plasmas



Dissipation in relativistic force-free 
plasma: resistive tearing mode 

• No shocks in                    plasma  

• Energy in B-field -> reconnection 

• Resistive force-free 

!
!

• Formation of magnetic islands, 

 just like in non-relativistic case 

• Growth like in non-relat.: 

!
!

• Fast, but not fast enough! 

• Collisionless - fast on skin, slow  
     on macroscopic scales
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Large scale simulations
• Toroidally-dominated B-fields are unstable to large-scale 

kinks 
• Formation of current-tubes 
!
!
!
!
!
!
!
!

• Parallel currents attract. Can flux merger be the source of 
Crab flares?
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Porth +, 2014



2D force-free state with

!
!
!
!
!
!
!
!
!
!
!

• Detailed investigation of stability using analytical, relativistic fluid-
type and PIC simulations (Lyutikov, +  2016)
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 Collapse of stressed magnetic X-
point in force-free plasma 
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• explosive dynamics on Alfven time 
• slow initial evolution 
• Starting with smooth conditions 

• Finite time singularity 

• Driven by large-scale stresses
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Dynamics force-free: 
–  infinitely magnetized plasma: 
– currents & charges ensure     
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Theory, fluid and PIC simulations
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1-E2/B2 in force-free simulations

Lyutikov +, 2017 JPP, submitted



Can produce power-laws
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PIC simulations by Sironi

E ~ B



Acceleration in X-point collapse: 
charge starvation

• Highly efficient acceleration by E ~ B 
• Driven by large scale magnetic stresses - wide-open X-

point (not like in tearing mode - flat X-point)  
• Acceleration starts abruptly, when reaching charge 

starvation.  
• During collapse current density grows 

!
!

• But J< 2 n e c - not enough particles to carry the current 

!
!

• E-field grows 

• Condition for charge starvation:                                    (not too 
demanding for Crab)
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p=2.2	
sigma=85

Collapse of an ABC system of 
magnetic islands

Two stages: 	
   - Fast acceleration, not much B-
field dissipated (X-point collapse)	
   - Slower acceleration, dissipation 
(island merger)



Current attraction: two stages: 
``Free-fall’’ and ``slow-resistive’’
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Initial attraction due to large-scale 
stresses 
Quasi-steady (repulsion by the current 
sheet) - slow resistive reconnection 
Two stages of particle acceleration: 
fast-impulsive and slow-resistive.

v

L>Lcrit - plasmoid instability of current sheet

E.B



Particles are accelerated by the 
reconnecting E-field near X-point

E ⇠ B / t

✏ / t2



The problem with gammamax

• Average magnetic energy gamma ~ sigma 
• Need 109 - cannot accelerate all 
• Evidence for high energy bump, presumably generated at the X-point 

collapse 
• Even for sigma ~ 100s, p ~ 1.5 can reach 109
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gammamax >> sigma!

if �  100 ! p > 2
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Where in Crab and AGNs? 
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Komissarov & Lyutikov, 2011
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Conclusion 2

!
Reconnection in magnetically-dominated plasma  
• can proceed explosively 
• efficient particle acceleration 
• reconnection can give p =1, alpha =0 
• the explosive stage - X-point collapse - produces a 

separate accelerated component 
• is an important, perhaps dominant for some phenomena, 

mechanism of particle acceleration in high energy 
astrophysical sources.
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