Brighter than a billion Suns: New physics at the synchrotron frontier

Andrei Lobanov, MPIfR, Bonn/Universität Hamburg

Synchrotron Era

- 1944: predicted by Ivanenko and Pomeranchuk, Physical Reviews, v.65, p.343, 1944
- 1946: observed in the "Synchrotron", an accelator built by General Electric in Schenectady, NY.
- 1950+: Relevance to cosmic objects recognized, and the era of cosmic synchrotron started.
- Synchrotron emission: nuisance in particle physics experiments while excellent light source for many other experiments; indispensable tool in astrophysics.

Cosmic Synchrotron

Cosmic synchrotron sources come in an astounding variety

Diagnostics of Synchrotron

Going from a single particle with $P(\omega) = \frac{\sqrt{3}}{8\pi^2 \varepsilon_0 c} \frac{q^3 B \sin \alpha}{m} F(x)$

to realistic plasma requires assuming distributions of particle energies $N(\gamma)$ and pitch angles.

□ Canonic assumptions: random pitch angle and a power law particle energy distribution $N(\gamma)d\gamma = N(\gamma_0) \gamma^{-s}d\gamma$

☐ Maximum brightness is then limited by the inverse-Compton losses to a brightness temperature $T_{b,\max} = \frac{I_{\nu,\max}c^2}{2 k \nu^2} \approx 10^{12}$ K, used as one of the prime diagnostics.

Getting to that I_{v}

- □ You want to have I_{ν} , but really measure S over an area Ω. $I_{\nu} = S_{\nu}/\Omega = S_{\nu}/[2\pi(1 - \cos\rho_d)] \approx S_{\nu}/(\pi\rho_d^2)$
- If you don't care about the extent of your region, you need to care about the resolution limit of your instrument. Then

$$I_{\nu} \ge 4S_{\nu}/(\pi \theta_{\lim}^2)$$
 $T_{b} \ge 2S_{\nu}c^2/(\pi k \nu^2 \theta_{\lim}^2)$

Otherwise, you need to image or model the structure of interest, before you can estimate T_b. Take, for instance (as everybody does) an elliptical gaussian:

$$I_{\nu} = (4 \ln 2/\pi) S_{g}/(\theta_{maj} \theta_{min})$$
$$T_{b} = [2 \ln 2/(\pi k)] S_{g} c^{2}/(\nu^{2} \theta_{maj} \theta_{min})$$

Interferometric Measurements

□ Interferometry: measuring visibility amplitude, *V*, at a spatial (Fourier) freuquency, *q*. Then for a source with

$$T_b = \frac{I_{\nu}c^2}{2k\,\nu^2} = \frac{S\,\lambda^2}{2k\,\Omega}.$$

- -- and a single measurement of *V* on a baseline *B*, -- with the proxies $S \to V$ and $\theta \to 1/q$ $(\Omega \to \pi/q^2)$,
- -- and recalling that $q = {}^{B}/_{\lambda}$,

one gets

$$T_b = \frac{I_v c^2}{2k v^2} = \frac{V B^2}{2\pi k}$$

That is: going to longer baselines is the best way to detect extreme brightness temperatures

RadioAstron's Quest for 7_b

- Space VLBI mission:
 orbiting 10-m antenna and arrays of ground antennas
- Operates at 0.3, 1.6, 5, and 22 GHz.
- First SVLBI mission with imaging and polarization capabilities at 22 GHz.

- Elliptical orbit with perigee/apogee: ~ 10,000/360,000 km; smallest fringe spacing of 7 μas (22 GHz).
- □ Excellent tool for probing extreme brightness temperatures.

A Step Further with RadioAstron

RadioAstron observations provide a factor of ~10 improvement in angular resolution, revealting the full wealth of structural detail down to the linear scales below 1000 $R_{\rm g}$ (and reaching ~10 $R_{\rm g}$ in nearby objects)

Space VLBI View of AGN Jets

Space VLBI with RadioAstron directly probes of physics of the central engine in AGN: $T_{\rm b}$, polarization, magnetic field. Poloidal magnetic field Shock Disk Corona Poynting flux
dominated Kinetic flux dominated egion superluminal knots: X-ray, UV, optical, IR radio to y-ray core Acceleration, collimation VLBI, 215GHz **CVLBI, 86GHz Broad Line Region** Narrow Line Region $10 R_g$ $10^2 R_g = 10^3 R_g$ $10^{4} R_{g}$ $10^{6} R_{g}$ $10^{5} R_{g}$ $10^{7} R_{g}$ 50 µas in M87 5 Rs

7_b Estimates from Visibilities

RadioAstron has limited imaging capability
 -- hence need to be able to estimate T_b
 directly from the visibility amplitudes

Interferometrist's luck: $V(q) = \mathbf{F} I(r)$

Measure S (proxied by V) and θ (proxied by q^1) with every single visibility.

Can then obtain robust limits on brightness temperature, if reasonable assumptions about zero spacing flux density, V₀, are made. GK047C

200

[VW]

That Darn $V(q) = V_q \exp(-i\phi_q)$

- \Box ... comes in different shapes, and is also noisy (σ_q)
 - Hence you need to know something about V(q) at least at two different values of q. For instance, $V_0 = V(q)|_{q=0}$.
 - **1** Then you can use $V_q < V_0$ and $V_q + \sigma_q \leq V_0$ to constrain T_b .

Minimum Brightness Temperature

For a measured V_{a} , is there V_{0} that minimizes T_{h} ? Indeed, there is always a minimum of $T_{\rm b}$, realized for some $V_0 > V_a$, since $T_b \to \infty$ for $V_0 \to V_a$ and $V_0 \to \infty$. 10It's at $V_0 = e V_a$ 5.5 5.5 for the Gaussian. T_b [arbitrary unit] 4.5 3.5 5. 4.5 \Box So, for a given $V_{\rm q}$, you cannot get 3.5 brightness temper-3 3. ature smaller than 2.5 2.52 6 8 10 e $T_{\rm b,min} = \frac{\pi e}{2k} B^2 V_{\rm q} \approx 3.09 \left(\frac{B}{\rm km}\right)^2 \left(\frac{V_{\rm q}}{\rm m\,Iv}\right)$ V_0/V_q

Maximum *T*_b **for Resolved Emission**

$$T_{\text{b,lim}} = \frac{\pi B^2 \left(V_{\text{q}} + \sigma_{\text{q}} \right)}{2k} \left[\ln \frac{V_{\text{q}} + \sigma_{\text{q}}}{V_{\text{q}}} \right]^{-1}$$
$$= 1.14 \left(\frac{V_{\text{q}} + \sigma_{\text{q}}}{\text{mJy}} \right) \left(\frac{B}{\text{km}} \right)^2 \left(\ln \frac{V_{\text{q}} + \sigma_{\text{q}}}{V_{\text{q}}} \right)^{-1} [\text{K}]$$

Brightness Temperature Runs

What Do We Get from RadioAstron?

- □ Most of the AGN imaged/modelfitted with RA show $T_{b,min} \ge 10^{13}$ K and $T_{b,lim} \ge 10^{14}$ K (cf., Kovalev+2016, Lobanov+2015, Gómez+ 2015)
- Similar results are coming from the visibility based estimates made from the RA survey data.

New Physics at the Brightness Limit?

- RadioAstron measurements indicate that violation of the IC limit on T_b may be rather common in AGN
- \Box Let's see what can we do to get those high $T_{\rm b}$ values:

	<i>Τ</i> _b ~ 10 ¹² Κ	<i>Т</i> _b >> 10 ¹² К
Emitting particles:	<i>e</i> ⁻ <i>e</i> +	e⁻ p+
Emission:	incoherent	coherent
Particle distribution:	power law	-> monoenergetic
Physical conditions:	~ equilibrium	continued injection
Geometrical conditions:	outside of jet cone	inside of jet cone

The right column could very well describe... a pulsar (!) or, generically, a highly magnetized object. If so, we may expect high T_b to be accompanied by high magnetic field.

What if You Crank Up the **B**?

□ Taking a look at a "normal" IC-loss dominated plasma in a strong magnetic field gives:

$$T_{b,max} \sim 7 \times 10^9 \,\mathrm{K} \,\left(\frac{B^{3/4}}{\mathrm{G}}\right)$$

- ☐ This, of course, implies a sky-rocketing $\nu_m \propto B^{1/2}$.
- □ However, the rogue v_m can be kept low if the plasma particle density $N_0 \propto B^{-7/2}$.
- □ This is actualy pretty feasible for:
 - a "runaway" cell in a turbulent flow;
 - a BZ beam inside of BP jet;
 - a truly "indigenous" pair creation (for $B > 10^{13}$ G)

Where Else Can Those B-fields Hide?

- □ In the collimation profiles of inner jet (NGC1052, Baczko+2016) $B > 10^4$ G
- In extremely well structured polarization (Gómez+2016), pointing towards a radial B-field.
- □ In extreme opacity profiles (e.g. IC 310, Schulz+2016), $B > 10^4$ G
- In extremely high rotation measures (Martí-Vidal+ 2015), RM > 10⁸ rad/m²

Fifty Shades of... Black?

- ❑ Present evidence does not strictly prove existence of BH.
- Need to devise instruments and experiments to distinguish effectively between BH and their alternatives (gravastars, wormholes, MECO):
 - stellar orbits: (S1, Sgr A*) good enough for BH vs. v condensate tests
 - radiation spectrum: high energies (BH vs. BS), ELF (BH vs. MECO)
 - gravitation waves: BH vs. anything (but need accurate templates)
 - VLBI: 2D imaging (BH vs. BS/MECO?), B-field (BH vs MECO)

Summary: Bs and T_bs in AGN

- □ The RA estimates of $T_{\rm b,min}$ suggest B > 10⁵ G.
- □ Good evidence for B~ 10³—10⁴ G in the nuclear region (Baczko+ 2016).
- Perhaps even stronger fields are implied by RM > 10⁸ rad/m² measured with ALMA (Marti-Vidal+ 2015).
- Even higher magnetic fields can be expected for exotic objects such as magnetized rotators (Kardashev 1995), wormholes (Novikov, Kardashev, Shatskiy 2006), or gravastars (Mazur & Mottola 2001).
- The quest for understanding the high T_b -- and the actual physical conditions near the event horizon scales – must therefore continue!