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Star-triangle relation (STR)

To evaluate multi-loop Feynman integrals we have to consider integral

dPz
[ & r

where x,y,z € RP, x = (X1,...,Xp), ..., X% = (x, x*)".
Interesting special case a +  + v = D firstly considered in CFT (see e.qg.
E.S.Fradkin, M.Ya.Palchik, Phys. Rep. 1978)

dPz B G(a, B)
/ (x —2)2 z2(080) (z —y)2P" (x)28 (x —y)AZ-ah) (y)2a

where parameters |o/ ;=2 —a | = o/ + (a+ ) + # =D,

a(o + ) rs)
B0 = aaga(s) ) = 7oz (E)

We'll discuss the group-theoretical interpretation of this identity.
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Graphic representation of Star Triangle Relation (reconstruction of
Feynman graphs):

0 0
o _ 1 atp
=y T oy . =G(a,p) 7 \e
« 2 B
X y X (atp) Y

Operator representation of STR: (APl, 2003)

p2e . §-2Aath) . =26 — §=26 . p2ath) . 20

where we have used Heisenberg algebra:

(G Bo] = 0y
. Proof.
(x|p~2e . G=Aa+B) . p=2Bly) = (x|§G—28 - p—2(atB) . g—2aly)
G2oly) =ly)y 2, (x|p~2ely) = a(a) (x —y) 2.
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Any STR is related to a solution R of the Yang-Baxter equation (YBE)
R12(U) Raz(U+V) R12(V) = Ras(V) Ri2(U+V) Ros(u) € End(V @V @ V)
u,v — are spectral parameters and 1, 2, 3 are numbers of vect. spaces
YBE — Integrable Model
e.g. STR = Zamolodchikov’'s "Fishnet” diagram Int. Model.

Our aim is to find R which corresponds to the operator-type STR:

ﬁZu . qZ(u—i—v) . FAJZV _ dZV . f)z(u—i-v) . q2u ) 1)

Consider two copies of the Heisenberg algebra {p;,q1} and {p,, G2 }:
[, BT = 160" .
Eqg. (1) can be written in two equivalent forms (1 <> 2)

Aoy A2(u+v) A 2(u+v) A2y

P> 'q12 : f)zzv = d%‘z’ : pz 012,
A 2 A A2 A
2. qXt) g2 — g2y . p2UtY) g2y

AR A AR
where 4}, = 0] —05.
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Then, by using these two star-triangle identities, one can prove that
‘R-operator (D.Chicherin, API, S.Derkachov, 2012)

(U—=vi) 5 2(us—vy) | A]_Z(U——V—) A2(ur—v-)

Rip(u —v) = a7y Py P "Y1z
S Erld(VA1 & VAz) ,

where V, is the space of conformal fields with conf. dimension A and
up=u+2l oy —u-A v, =v B2 D Dy =y L2
is a solution of the YB equation
R12(U) Ro3(U 4+ V) R12(V) = Ro3(V) Ri2(u + V) Roz(u)
€ End(Va, ® Va, ® Va,) ,

. I522(u,—v,) . d§§u+—v,)’

(u—=vy) | 5 2(up—vy)

R23(u - V) = 6I§3 g )
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For A1 = Ay = --- = Ay = A we define the set of operators Ry, €
End(Va, ® Va, ® ---Va,) Which act nontrivially only in the spaces with
numbersa,b € 1,2,3,...,N and are defined as following

Rab(a; ) = (Gap)) ) (Ba))?* (Do) )** (G(an) )2~ =
= 1—|—Oéh(ab)(§)—|-042... s
wherea=u—v, £ = % — A and Hamiltonian densities h(ay)(x) are
h(ab)(€) = 2 IN(G(an))? + (G(ab))* (PG Pdy) (Gean)) > =

= p(a) In(Q(ab)) p(a) + p(b) n(g Q(ab) ) p(b + In(p( )f)(%)) .
Using the standard procedure one can construct an integrable system

with Hamiltonian
N—1
= Z h(a,a-l-l)(f)
a=1

For D = 1 and £ = 1/2 this Hamiltonian reproduces the Hamiltonian
for the Lipatov’s integrable model which is related to BFKL equation
(QCD for high energy scattering).
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These models are models of spin chains related to noncompact Lie
algebras.

Conjecture. For general case D > 1 and £ # 1/2 the spectrum of the
Hamiltonian
A a 2 (A 2 ~2 a2 a 2
H(E) = 3 (2 In(8aas1)? + (Gaarn)® NBE) BE.1)) (learn) %) -

a=1

will be the same as for the Lipatov’s Hamiltonian. But degeneracy and
wave functions will be different.
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To summarize:
our aim is to construct explicit form of L-operator which solves
RLL equations with operator type R-operator:

I R(u—V)L%(U) @ L7 (v) =L%(V) ® L7 (U) R(u —v)

where elements L“,(u) € U(conf) are operators in Va4,
operator R(u — v) is intertwiner Vo ® Var — Vo ® VA and u and
v are spectral parameters.
Further we also need another type of RLL equations:

I R% (u—v) Lﬁ;l(u) Lﬁgz(v) =L (V)L (u) Rﬁ;fgz(u —V),

where R(u — v) is a numerical matrix which acts in V @ V.

Such L-operator which solves both type of RLL-relations are
main building block for constructing (and solving) of quantum
integrable systems.
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Remark. Consider rational Zamolodchikov’'s R-matrix

Ao n an e n o] CO [e%Ke)
Riisr (4) = U(u-+ 3 = D5 +(U-+ 5~ DORIT —ug™™ G

where g is the metric in RP-9. For this R-matrix the RLL relations of the
lI-type define the Yangian Y (so(p + 1,q + 1)). l.e. a solution L(u):

_I+Zu (LK)

of such type RLL relations is a generating function of infinite number
of generators (L&), of the Yangian Y (so(p + 1,9 + 1)). Note that

(L)2, are elements of so(p + 1,9 + 1) C Y (so(p + 1,4 + 1)).

One can search a solution of the RLL relations in the form
u=1+> u™L® cEndVaV,).

This solution is called N-order evaluation of the the Yangian
Y (so(p + 1,9 + 1)). Evaluation representations ???
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If L5(u) is N-order evaluation of the the Yangian Y (so(p + 1,9 + 1))
(polynomial in u), then the operator (monodromy matrix)

T (U) =L (u+ &)oL’ (ut+ &) e L (u+&),

(here & — are anisotropy parameters) also solves RLL equation and
defines new representation T} (u) of the Yangian.

One more motivation:

There is a conjecture that MHV, NMHYV, ... amplitudesforN =4 D =4
SYM theory, possess Yangian symmetry with respect to the action of
Y (su(2,2)).

Chicherin, Derkachev and Kirschner (2013) have shown that this
symmetry for n-points amplitude M, can be formulated in the form of
the condition

T, (U) - Mn = A(U)d%, - Mn

which is nothing but eigenvalue problem for n-th monodromy matrix
T, (u).

Our aim is to generalize this approach to the case of
osp(N|M)-algebras.



Now we recall the definition of the Lie algebra conf(RP-9).
RP-9 — pseudoeuclidean space with the metric

0 = diag(1,...,1,-1,...,—1).
—_—— ———
p q

conf(RP-9) — Lie algebra of the conformal group in RP9 generated by
{Lw,P,,K,,D} (v =0,1,...,p+q—1):

[Luw s Lool =1(9up Lo + Guo Lup — 9up Lue — Guo Lyp)
Ko, L] =1 (9pu Ko =9 Kp) 5 [Py L] =1(9puPr — 9w Pu)
[D,P,]=iP,, [D,K=—iK,
K., P,]=2i (9w D~Lw), [P.,P,J]=0,
[K;u Ku] =0, [LMVa D] =0.

L,.. — generators for the rotation group SO(p, q) in RP9,
P, — shift generators in RP-9,

D — dilatation operator,

K, — conformal boost generators.




We have the well known isomorphism:
conf(RP9) =so(p+1,q +1)
and on generators it is formulated as
L,uzz = M,uzz 5 K,u = Mn,u - Mn-i-l,u )
P,u = Mn,u + Mn-&-l,u 5 D= _Mn,n-i-l ) (n =p+ q) ’

where My, (a,b =0,1,...,n+ 1) generate so(p + 1,q + 1):

[Maba IVldc] = i(gbd Mac + gachd — Jad Mpe — gbcMad) )

Oab = diag(1,...,1,-1,...,-1,1,-1).
—— N—— —
P q

The quadratic Casimir operator for conf(RP-9) is

1 1
C2 = 5Map mab — 5 (L L 4+ PuKF + K, PH) — D?.
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Consider the first-order evaluation of the Yangian Y (so(p + 1,9 + 1)).

Proposition 1. The L-operator of conf(RP9) = so(p + 1,q + 1)-type,
which solves RLL equation (of Yangian type, or type Il), has the explicit
form:

1
L(u)=1+u"! STo(M™) @ p(Map) € End(V ©V,).

where My, are generators of so(p + 1,q + 1) in the representation p:

0

yb 8ya Y

0
Mg
p(Mab) = Ya7—p dyb

and Ts is spinor matrix representation of conf (RP-9) = so(p+1,q +1).
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Spinor reps Ts of conf(RP9) = so(p + 1,9 + 1)

Letn =p+q = 2v(= D) be even integerand v, (v =0,...,n — 1) be
22-dimensional gamma-matrices in RP:4:
VYo + WY =29,
L = QN0 Y1, 0F = (=1)F0DZ = (e

where « is such that 7r2]+1 = |. Using gamma-matrices ~, in RP-9 one
can construct representation Tg of conf(RP9) =so(p + 1,9 + 1)

. T
Ts(l-;w) = !Z ['Y;u W = Ly TS(KM) = Tu % = k;u
Ts(P) =7, H sl =p, | Tg(D) = —f s =d.

where P* = % are Weyl projectors.
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Further we search the L-operator

1
L(A)(u) =ul+ ETS(Mab) ® pa(Mab)

where pa — the standard differential representation of conf (RP:9) in
space of fields with conf. weights A (G. Mack and A. Salam (1969))

pA(Pu) = _iaxu = f),u ) PA(D) = Xup\,u —IiA 5
pa(Ky) = 2% (£, + Sup) + (XVX,)P, — 2iAX,,

pA(I—uu) = é\uu + S;u/ ) é\w/ = (Xl/f)u - Xuﬁu) )
where x,, = {,, are coordinates in RP9, S, = —S,, are spin
generators (with the same commutation relations as for /,,,) and
[Sw,X,] = 0 =[S, P,]. For the quadratic Casimir operator we have:

1 -
pa(C2) = 5 (Suw S = ) + A(A = ).

The representations pa and p,_a are contragradient to each other
and in particular we have pa(C2) = pn_a(C2).
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Let the representation pa acts in space of conformal spin-tensor fields
of the type (¢, ¢). The action of spin generators S, on such fields is J

Q-G Q-G

[SMVq)]dldeé = (O',W) - q)aaz“'aze +oet (U,W) y q)al"'aZZfla +

Qg a @2¢

— dl aazay _ 0'(22 0“1"'0-‘22710.4
+ (UIW) & cl)011"'0125 +ot (UMV) & (Dal'"aze :

For symmetric representations it is convenient to work with the
generating functions

DX, A, 1) = GO0 (x) AL N2 R

O{zé 9

where X and } are auxiliary spinors and the action of S, is given by
differential operators (over spinors) S,, = A, 0\ + AT ,,05:

[S,,®] (X, A, 8) = [Ao iy + X a,wax] O(x,\,X)

where A, 0 = Ao (0,) % Or, NG ,,05 = X (&W)f d5
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Consider conf(RP-9) = so(p + 1,q + 1)-type operator (first order
evaluation of the Yangian Y (so(p + 1,9 + 1))):

LA () = LBy, un) =ul+ ETS(Mab) ® pp,0,i(Mab) ,

where Ts is the spinor representation and p, , ; is the differential
representation of the conformal algebra so(p +1 ,g + 1) which acts on
the conformal spin-tensor fields ¢, , ;(x);

A—n A
5 u_- =u-—- = n=p+q,

U+:U—|— 27

We have used the expression for the "polarized” Casimir operator
3Ts(M®) @ p, , /(Map) which was discussed in context of the
differential representation of the conformal algebra.
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Proposition 2.
For trivial representation S, = 0 and any dimension n = p + g the
operator L(#)(u,,u_) satisfies the RLL relation

Raa(u —v) (L)3(u) (L) (v) =
= (L)a(v) (L) (U) Raa(u —v) € ENd(V ®Va, @ Va,),

with R-operator € End(Va, ® Va,)

~2(u_—v_)

.pl

2u——vy)  A2(up—vy)

Ay

The operator L®)(uy,u_) = L(®)(u) is also intertwined by the
spinorial R-matrix which acts in End(V ® V) where V — is the space of
spinor representation .
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Let I, be 2271-dim. gamma-matrices in RPT14+1 (n = p + q) which
generate the Clifford algebra with the basis

1
Fay..a = o Z; (_1)p(s)rs(al) - Ts(ay) (k <n+2),
SESk

where p(s) denote the parity of s € Sk. The SO(p + 1,q + 1)-invariant
spinorial R-matrix is (it is necessary to take Weyl projection)

n+2 Rk (u)
R(u) => o Taa @M% € End(V o V),
k=0 ’

where V is the 22 t1-dimensional space of spinor representation T of
SO(p + 1,9 + 1). To satisfy the Yang-Baxter equation the functions
Rk (u) have to obey the recurrent relations (R.Shankar and E.Witten (1978),
Al.B.Zamolodchikov (1981), M.Karowsky and H.Thun (1981))

u—+k
— R .
u+n-k k(u)
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Proposition 3.
Consider two special cases:

@ Dimension n = p + q of the space RP-9 is arbitrary but
representation pa of conf(RP-9) is related to the trivial
representation of spin S, = 0.

@ The dimension of the space RP:9 is fixed by n = p +q = 4 and
representation p, , ; of conf(RP9) corresponds to arbitrary spin

(€,£): Sy #0.
For these cases, the operator L(?)(u) satisfies the RLL relation

. Ryp(u —v) LWL v) = LI v)L () Rya(u = v)

with the spinorial R-matrix Ri2(u) € End(V ® V), where V is the
22-dimensional space of spinor representation T of conf(RP:9) and
indices 1, 2 are numbers of spaces V.
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Proposition 4.
For any representation of spin S, and n = p + ¢ = 4 the operator
L(A40(u) satisfies the RLL relation

V. Rip(u—v) - (L )g(u) - (P22 (v) =
= (L2 D)) - (LA D) ) Raau —v) €
€ End(V ® Va i @ VAz,Kz,éz) ,
with special Yang-Baxter R-operator
[Riz2 ®](X1, Ar, A1iXe, Az, A2 ) =

d4q d?k d4y d4z el ([@+k)xz1 gik (y—2)
- / q2(u_—v++2)22(u+—v++2)y2(u_—v_+2)k2(u+—v_+2) ' (2)

'(D(Xl _y7 AZZE7 S‘quv Xo —Z, A:l.qz7 lek)7
where we have used compact notation

X =o,X"/|x|, X=7,x"/X].
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Final Remarks: _ _
Remark 1. Green function for two fields of the types (¢, ¢) and (¢, /) in
conformal field theory is well known

1 G (x-ni)”

(0002 = G R

Here X = x, A, X and for simplicity we use compact notation

XH XH

XZO‘HW;Y:E#W (3)

Remark 2. The integrable model of the type of Zamolodchikov’s
"Fishnet” diagram Integrable System for R given in (2) is not known.
Remark 3. Proposition 3 has been recently generalized (J.Fuksa, API,
D.Karakhanyan, R.Kirschner) to the cases of sp and osp Lie
(super)algebras.
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R-operators and L-operators

Group-theoretical meaning of Yang-Baxter R-operator.
The Yang-Baxter R-operator acts in the tensor product of two
representation spaces of conformal algebra conf(RP) = so(D + 1,1)

Pp,(X1) ® Pp,(X2) €Va, @ V4, ,

where ¢4 (x) are spinless fields with conformal dimension A.
The meaning of R: it intertwines two representations

ng(u — V) : Va, ®Va, = Va, ®Va, .
or
Rlz(u — V) . AAl & BAZ = B/Ag ®A/A1 . Rlz(u — V) .
where Ap,, A, € End(Va,) and Ba,, B, € End(Va,).
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To demonstrate this we construct L-operator (quantum analog of a Lax
operator — important object in quantum integr. models)

LS =L®) © VeVa—VeVa

where V is the space of a finite dim. (e.g., spinor) representation T of
conf(RP). The L-operator is the operator which satisfies RLL relations

Ras(u—v) (L5 () (L) (v) = (L3 (v) (LV)E (u) Ras(u—v)

where

(LS)2 e To(U(conf))g @ pa(U(conf)) @1,

(L)g e Ts((conf))g © 1 ® pa(U(conf)) .
Here U{(conf) is associative algebra (we specify it below), in particular
it is enveloping algebra of conf(RP9)) and pp is a differential

representation of the conformal algebra which act in the space Va of
conformal fields.
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Thus, in view of the RLL relations we should have

Roz(u) =1 @ R(U) : 1® pa,(U(conf)) @ pa,(U(conf)) —
— 1 ® pa,(U(conf)) @ pa, (U(conf))

Further we will consider the general pseudoeuclidean space RP-4
(p+9g=D=n).
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We choose the representation for -, in RP-9 as:

(0 @, /10
T = Eu 0 y Tn+l = 0 -1 ’

where 0,6, + 0,6, =29,,1, ©,0,+0,0,=20,1.
Thus, the representation Ts of conf(RP-9) is

0 i;(auﬁ,,—a,,ﬁu) _ 0 _( ow 0
7% 0 %(Euay_ﬁyau) 0 o )

0 0 0 o i (1 0
L - —_-
p_<E“0>’k_<O o>’d_ 2(0—1)'

Recall that

Sl

Ouw = ||(0';w) O = ||(Eu1/)d3|| )

are inequivalent spinor representations of so(p,q) = spin(p, q).
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Any element of conf(RP-%) in the representation Ts is

A =i(w" €, +ap, + bk, +5d) =

_ §l+iw"”awj ib*o, _ (e e
iate, —gl—kiw‘“’ﬁw €21 €22

We consider A as the matrix of parameters w””, a*, b*, 5 € R.

Further we search the L-operator

1
LA (u)=ul + ETS(M""b) ® pa(Mab)

where pp — representation of conf (RP-%) on conformal fields with
conf. weights A.
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In representation pa, the elements of conf(RP-9) act on the fields ®(x):
pa(wh Ly, +at P, +b*K, 4+ BD)d(x) =

T, [(Eﬂ El?) (Ts(Mab)'P(Mab))] O(x) .

€21 €22

where <i11 212> is the 2 x 2 block matrix of parameters, and the
21 €22

matrix of generators is

1 1
STe(M) (M) = (T & ) 5 M M) =

- 7% 1+S-p-x, p
X-S=S-x—x-p-x+(A-D)-x, —-4.14S4+x-p )’
Here we introduced

1 A~ i Pa—
p=z0tp,=—50!0,, X=-iolx,,

g _ lzuw — 1
S=50"Su, S=50"Su.



For 4-dimensional case RP9 = R13 we have 2-component Weyl

spinors \, \ and tensor fields ¢Z§Zg§ (x) should be symmetric under
permutations of dotted and undotted indices separately.
Then, for n = 4 we have

g, = (00701702703) ) E,u = (007 —01, =02, _03) 5

where o = |, and o1, 0, 03 are standard Pauli matrices.
Consequently we obtain for the self-dual components of S,

1 <% MOy, — 5 \20y, A20x )

S==-0"S,, =
2 " A0y, —3 M0, + 5 A2y,

and for anti-self-dual components of S,

S = 1 TS, = %S‘ia&i -3 /N\éaié iy Xi@ii iy
)\185\2 —% )\185\1 + % /\285\2
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