Hawking radiation of black hole with supertranslation field

Mikhail Z. lofa

Skobeltsyn Institute of Nuclear Physics Moscow State University

May 29, 2017

Mikhail Z. lofa (SINP)

May 29, 2017 1 / 15

Schwarzschild metric in isotropic spherical coordinates and its generalization with supertranslation field

$$ds^2 = -rac{(1-M/2
ho)^2}{(1+M/2
ho)^2}dt^2 + (1+M/2
ho)^4(d
ho^2 +
ho^2 d\Omega^2)$$

Generalization of the Schwarzschild metric with supertranslation field (G.Compere and J.Long, 2016)

$$ds^{2} = -\frac{(1 - M/2\rho_{s})^{2}}{(1 + M/2\rho_{s})^{2}}dt^{2} + (1 + M/2\rho_{s})^{4} \times \left(d\rho^{2} + (((\rho - E)^{2} + U)\gamma_{AB} + (\rho - E)C_{AB})dz^{A}dz^{B}\right) \rho_{s}(\rho, C) = \sqrt{(\rho - C)^{2} + D_{A}CD^{A}C} \gamma_{AB}dz^{A}dz^{B} = d\theta^{2} + \sin^{2}\theta d\varphi^{2} C_{AB} = -(2D_{A}D_{B} - \gamma_{AB}D^{2})C$$

Mikhail Z. lofa (SINP)

$$m{C} = m{C}(heta)$$
 $C_{ heta heta} = -\left(C'' - C' \cot heta
ight), \qquad C_{arphi arphi} = -\sin^2 heta \left(C'' - C' \cot heta
ight)$
 $C_{arphi heta} = 0$

Kerr case: $C_{\theta\theta}(\theta) = a/\sin\theta$, $C(\theta) = a_2 + a_1\cos\theta + a\sin\theta$ (S.J.Fletcher and A.W.Lun, 2003, G.Barnich and C.Troessaert, 2011)

Notations

$$L := 1 - \frac{2M}{r}$$
$$K := r - M + rL^{1/2}$$

Transformation from isotropic to Schwarzschild variables $\mathbf{r} = \mathbf{r}(\rho_s(\rho, \mathbf{C})) \Rightarrow \rho = \rho(\mathbf{r}, \mathbf{C})$

$$\rho_{s}(\rho, C) = \sqrt{(\rho - C)^{2} + D_{A}CD^{A}C}$$

$$r := \rho_{s}(\rho, C) \left(1 + \frac{M}{2\rho_{s}(\rho, C)}\right)^{2}$$

$$b := \frac{2C'}{K}$$

$$\rho = C + \frac{K}{2} \left(1 - \frac{4(DC)^{2}}{K^{2}}\right)^{1/2} = C + \frac{K}{2}\sqrt{1 - b^{2}}$$

$$d\rho = \frac{K}{2} \left[\left(b - \frac{bb'}{\sqrt{1 - b^{2}}}\right) d\theta + \frac{dr}{rL^{1/2}\sqrt{1 - b^{2}}} \right].$$
Horizon

 $\rho_s(\rho_H, C) = M/2 \Rightarrow r = 2M$

Transformed metric with supertranslation field in Schwarzschild variables

$$ds^{2} = -Ldt^{2} + \frac{dr^{2}}{L(1-b^{2})} + 2drd\theta \frac{b(\sqrt{1-b^{2}}-b')r}{(1-b^{2})L^{1/2}} + d\theta^{2}r^{2}\frac{(\sqrt{1-b^{2}}-b')^{2}}{1-b^{2}} + d\varphi^{2}r^{2}\sin^{2}\theta(b\cot\theta - \sqrt{1-b^{2}})^{2}.$$

Inverse metric (t, r, θ) part

$$\begin{pmatrix} L^{-1} & 0 & 0 \\ 0 & L & -L^{1/2}b[r\sqrt{1-b^2}-b']^{-1} \\ 0 & -L^{1/2}b[r\sqrt{1-b^2}-b']^{-1} & [r(\sqrt{1-b^2}-b')]^{-2} \end{pmatrix}$$

Equation for eigenmodes

$$\Box \psi = rac{1}{\sqrt{|g|}} \partial_\mu \sqrt{|g|} g^{\mu
u} \partial_
u \psi = 0$$

Perturbative solution of the equation in parameter $\frac{O(C)}{K} \sim \frac{O(C)}{M}$ in the near-horizon region $L = 1 - 2M/r \ll 1$

$$\psi = \psi_0 + \psi_1 + \psi_2 + \cdots$$

$$\Box \psi = \Box_0 \psi_0 + \Box_1 \psi_0 + \Box_0 \psi_1 + \Box_2 \psi_0 + \Box_0 \psi_2 + \Box_1 \psi_1 + \cdots$$

ubscripts denote the orders in $\frac{O(C)}{K}$.

S-wave mode

Zero order equation

$$\Box_0 \psi = (rL)^{-1} \left[-\partial_t^2 + \partial_{r_*}^2 + L \left(\frac{2M}{r^3} - \frac{\hat{K}^2(\theta, \varphi)}{r^2} \right) \right] r \psi$$

S

Zero-order S-mode

$$\psi_0 = \frac{e^{i\omega(t\pm r_*)}}{\sqrt{4\pi}r}$$

The first order equation $\Box_1\psi_0 + \Box_0\psi_1 = 0$

$$\Box_{1}\psi_{0} = L\left(\frac{1}{\sqrt{-g}}\partial_{r}\sqrt{-g}\right)\Big|_{(1)}\partial_{r}\psi_{0} + \frac{1}{\sqrt{-g}}\partial_{\theta}(\sqrt{-g}g_{1}^{r\theta})\partial_{r}\psi = \\ = \left[L\partial_{r}(-b'-b\cot\theta) - \left(\frac{L^{1/2}}{r}\right)(b'+b\cot\theta)\right]\partial_{r}\psi_{0} = 0 \\ L\partial_{r}b = L\partial_{K}(2C/K)\partial_{r}K = -bL^{1/2}/r \\ \psi_{1} = \psi_{0}$$

Second-order equation $\Box_2\psi_0 + \Box_0\psi_2 = 0$

$$\Box_2 \psi_0 = \left[L\left(\frac{\partial_r \sqrt{-g}}{\sqrt{-g}}\right)_{(2)} + \left(\frac{\partial_\theta \sqrt{-g}}{\sqrt{-g}}\right) g^{r\theta} \Big|_{(2)} + \partial_\theta g^{r\theta} \Big|_{(2)} \right] \partial_r \psi_0$$

Derivatives ∂_r produce powers L^{-1}

$$\partial_r \frac{e^{i\omega r_*}}{r} \simeq \frac{e^{i\omega r_*}}{r} \frac{i\omega}{L}, \qquad \partial_r^2 \frac{e^{i\omega r_*}}{r} \simeq -\left(\frac{\omega^2}{L^2} + \frac{2iM\omega}{L^2r^2}\right) \frac{e^{i\omega r_*}}{r}.$$

In the leading order in L^{-1}

$$\Box_2 \psi_0 = \frac{F_{(2)}(\theta)}{K^2} \frac{\pm i\omega}{L^{1/2}} \psi_0$$

Solution of the eqution $\Box_2\psi_0 + \Box_0\psi_2 = 0$

$$\frac{1}{rL}\left[-\partial_t^2 + \partial_{r_*}^2 + L\left(\frac{2M}{r^3} - \frac{\hat{K}^2(\theta,\varphi)}{r^2}\right)\right]r\psi_2 = \frac{\pm i\omega}{L^{1/2}}\frac{F_{(2)}}{K^2}\frac{e^{i\omega(t\pm r_*)}}{r}$$

Looking for solution in the form $r\psi_2 = L^{1/2} \varphi \, e^{i \omega (t \pm r_*)}$, we obtain

$$\left[\left(\frac{M}{r^2}\right)^2 \pm 2i\omega\left(\frac{M}{r^2}\right)\right]\varphi = \pm i\omega\frac{F_{(2)}}{K^2}$$

Second-order solution

$$\psi_2 \simeq L^{1/2} \frac{\pm i\omega r^2}{(1\pm i4r\omega)} \frac{F_{(2)}}{K^2} \psi_0 \bigg|_{r\sim 2M}$$

Higher-order solutions ψ_n

The equation for ψ_n

$$\Box_n \psi_0 + \sum \Box_k \psi_l + \Box_0 \psi_n = 0$$
$$\partial_r \frac{O(C^n)}{K^n} = -n \frac{O(C^n)}{K^n r L^{1/2}}.$$

Because

i) $g^{rr} = L$ does not have contributions of higher orders in O(C)/M, in equations of higher order there are no terms $\partial_r g_{(n)}^{rr} \partial_r$. ii) ∂_{θ} does not change the order in L, we obtain

Solution ψ_n

$$F_{(2)}/K^2 \to F_{(n)}/K^n$$

 $\psi_n \sim L^{1/2}O(C^n/K^n)\psi_0$

Isotropic geodesics (S.Chandrasekhar, 1983)

Lagrangian

$$2\mathcal{L} = -L\dot{t}^{2} + \frac{\dot{r}^{2}}{L}\hat{g}_{rr} + 2\frac{r\dot{r}\dot{\theta}}{L^{1/2}}\hat{g}_{r\theta} + r^{2}\left[\dot{\theta}^{2}\hat{g}_{\theta\theta} + \dot{\varphi}^{2}\sin^{2}\theta\hat{g}_{\varphi\varphi}\right]$$
Equation for $r(\tau)$

$$\frac{\ddot{r}}{L}\hat{g}_{rr} - \frac{\dot{r}^{2}}{r^{2}L^{2}}\hat{g}_{rr} + \frac{E^{2}}{r^{2}L^{2}} + \frac{\dot{r}^{2}}{2L}\partial_{r}\hat{g}_{rr} + \frac{\dot{r}\dot{\theta}}{L}\partial_{\theta}\hat{g}_{rr} + \frac{\ddot{\theta}r}{L^{1/2}}\hat{g}_{r\theta}$$

$$+\dot{\theta}^{2}\left(\frac{r}{L^{1/2}}\partial_{\theta}\hat{g}_{r\theta} - r\hat{g}_{\theta\theta} - \frac{r^{2}}{2}\partial_{r}\hat{g}_{\theta\theta}\right) - \dot{\varphi}^{2}\left(r\hat{g}_{\varphi\varphi} + \frac{r^{2}}{2}\partial_{r}\hat{g}_{\varphi\varphi}\right) = 0$$
Equation for $\theta(\tau)$

$$\ddot{\theta}r^{2}\hat{g}_{\theta\theta} + 2r\dot{\theta}\dot{r}\hat{g}_{\theta\theta} + r^{2}\dot{\theta}\dot{r}\partial_{r}\hat{g}_{\theta\theta} + \frac{1}{2}r^{2}\dot{\theta}^{2}\partial_{\theta}\hat{g}_{\theta\theta} + \frac{\ddot{r}r + \dot{r}^{2}}{L^{1/2}}\hat{g}_{r\theta} - \frac{\dot{r}^{2}}{rL^{3/2}}\hat{g}_{r\theta} + \frac{\dot{r}^{2}r}{L^{1/2}}\partial_{r}\hat{g}_{r\theta} - \frac{\dot{r}^{2}}{2L}\partial_{\theta}\hat{g}_{rr} - \dot{\varphi}^{2}r^{2}(\sin\theta\cos\theta\hat{g}_{\varphi\varphi} + \sin^{2}\theta\partial_{\theta}\hat{g}_{\varphi\varphi}) = 0.$$

_

Ansatz for solution for radial null geodesic in the near-horizon region

Ansatz

$$\dot{t} = E/L,$$

$$\dot{r} = C + C_1 L^{1/2} + \cdots,$$

$$\dot{\theta} = A L^{-1/2} + A_1 + \cdots,$$

$$\varphi = const$$

Leading in L^{-1} parts of equations

$$L^{-2} [E^2 - C^2 \hat{g}_{rr} - rAC \hat{g}_{r\theta}] = 0,$$

$$L^{-3/2} [C \hat{g}_{r\theta} + rA \hat{g}_{\theta\theta}] = 0.$$

Solution for C and A

$$C^2 = E^2$$

$$A \simeq -\frac{C \hat{g}_{r\theta}}{2M \hat{g}_{\theta\theta}} \Big|_{L \ll 1}$$

Mikhail Z. lofa (SINP)

Hawking

Equation $\mathcal{L} = 0$

$$L^{-1}[C^2 \hat{g}_{rr} - E^2 + 2rCA\hat{g}_{r heta} + r^2A^2\hat{g}_{ heta heta}] \equiv 0.$$

 $\hat{g}_{rr}\hat{g}_{ heta heta} - \hat{g}_{r heta}^2 = \hat{g}_{ heta heta}$

Solution for geodesics $L \ll 1$

Schwarzschild case

$$t = t_0 + E\tau \qquad t = t_0 + E\tau$$
$$r = 2M + E\tau \qquad r = 2M + E\tau$$
$$\theta = \frac{\pi}{2} - \frac{\hat{g}_{r\theta}}{2\hat{g}_{\theta\theta}}L^{1/2}. \qquad \theta = \frac{\pi}{2}$$

In the near-horizon region, relevant for calculation of the Hawking radiation, both solutions for the eigenmodes and isotropic geodesics, calculated in Schwarzschild geometry with supertranslation field, have the form similar to solutions in the pure Schwarzschild case.

The accuracy of the above calculations in L = 1 - 2M/r is the same as in the "standard" calculations (Hawking, 1975, N.D.Birrel and P.C. Davies, 1982, Brout et al., 1995,...).

With the same accuracy, the density matrix of radiation is the same as in the Schwarzschild case.

Thank you

э