ИI ЯN ИR

Bugaboo black holes

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

Ginzburg Centennial Conference on Physics Lebedev Institute, Moscow, Russia, 29.05.2017

Dmitry Gorbunov (INR)

Bugaboo black holes

The talk in brief (I)

• Our vacuum is unstable

EW vacuum in SM is apparently false

 $E_{\rm EW} = 100\,{
m GeV}
ightarrow 10^{11}\,{
m GeV} = E_{\rm crit}$

- vacuum lifetime >>> Universe age
- Black Hole can induce vacuum decay
 - BH evaporates,
 - tiny BH has higher temperature
 - BH reaching $T \sim E_{crit}$ induces tunneling via bubble production

P.Burda, R.Gregory, I.Moss (2015,2015,2016)

$$T \propto M_{\rm Pl}^2/M_{\rm BH}$$

The talk in brief (II)

D.G., D.Levkov, A.Panin (2017)

- if so, Bugaboo black holes ruin many models of early Universe
 - Inflation often ends with a dust-like stage
 - $\delta
 ho/
 ho \propto a(t)$ and may $ightarrow \delta
 ho/
 ho \sim 1$
 - BH birth is an extremely rare event
 - BH quickly evaporates reaching $T \sim E_{crit}$
 - then it produces a bubble of the true vacuum
 - which by now covers the entire visible Universe

- 2 Black Hole induced tunneling
- Black Hole production at preheating

Outline

- 2 Black Hole induced tunneling
- 3 Black Hole production at preheating

4 Conclusion

EW Higgs boson mass

1503.07589

Running of the SM couplings

1305.7055

Critical point: selfcoupling becomes negative

Dmitry Gorbunov (INR)

EW Higgs potential with quantum corrections

Apparently we leave in a false vacuum... A.Bednyakov et al (2015)

EW vacuum is false, but very long-lived

D.Buttazzo et al (2013)

$$t_{tunn} > 10^{600} \, \text{y}$$
 vs $t_{U} = 10^{10} \, \text{y}$

Tunneling rate to the Planck vacuum is exponentially suppressed

All bosons fluctuate including the SM Higgs $\phi \sim H/2\pi$

Further limits on inflationary models

- Instability constrains inflation, $H \lesssim ... 10^9 ... 10^{13} \text{ GeV}$
- BH-danger constrains the subsequent preheating stage

- Black Hole induced tunneling
- 3 Black Hole production at preheating

Further limits on inflationary models

• Imagine a BH in equilibrium with thermal bath

$$T_{
m bath} = T_{
m BH} \propto M_{
m PI}^2/M_{
m BH}$$

In thermal bath any field configuration is allowed, but Boltzman suppressed

 $P \propto e^{-E/T_{BH}}$

 P.Burda, R.Gregory, I.Moss (2015,2015,2016) performed a Euclidean calculation for a true vacuum bubble configuration with BH inside

$$P \propto e^{-E_B/T_{BH}}$$

It looks like a thermal jump over the potential barrier

$$P\sim 1$$
 at $T_{
m BH}\sim h_{crit}$

Take it as it is

2 Black Hole induced tunneling

4 Conclusion

Inflationary solution of Hot Big Bang problems

- no initial singularity in dS space
- all scales grow exponentially, including the radius of the 3-sphere the Universe becomes exponentially flat
- any two particles are at exponentially large distances no heavy relics no traces of previous epochs!
- no particles in post-inflationary Universe to solve entropy problem we need post-inflationary reheating

Black Hole production at preheating

Chaotic inflation at large fields: graceful exit

If $V(\phi)$ dominates by chance

$$\ddot{\phi} - \Delta \phi / a^2 + 3H\dot{\phi} + V'(\phi) = 0$$

for power-law potential at $\phi > M_{Pl}$

 $V \simeq \text{const}$

"slow roll" solution

$$\mathcal{H}^2 = rac{8\pi}{3\,M_P^2}\,V(\phi)\,,\;\;a(t) \propto \mathrm{e}^H$$

valid while

slow roll conditions

$$M_P^2 \frac{V''}{V} \ll 1$$
, $M_P^2 \frac{V'^2}{V^2} \ll 1$

Dmitry Gorbunov (INR)

Chaotic inflation, A.Linde (1983), A.Linde (1984)

Later inflaton oscillates and Universe expands 'normally', $a(t)/t \rightarrow 0$ e.g. if $V(\phi) \propto \phi^2$

it looks like Matter-dominated stage

Black Hole production at preheating

N

Unexpected bonus: generation of perturbations

scalar modes $\delta \phi_{\lambda} \sim H_{infl}$ Later at normal stagetensor modes $\delta g_{\mu\nu} \sim h \sim H_{infl}/M_{Pl}$ $H \propto 1/t, q/H \nearrow$, modes "enter horizon"

Dmitry Gorbunov (INR)

Bugaboo black holes

Observation of matter power spectrum

The natural choice: $V(\phi) \propto \phi^2$ is the simplest oscillator

Universe expands as at Matter domination

$$H^2(t) = \frac{8\pi}{3} \, G\rho \propto \frac{1}{a^3(t)} \, ,$$

subhorizon matter perturbation modes

$$a/k \simeq R(t) \ll 1/H(t)$$

grow linearly with scale factor $(\delta \rho / \rho)_k \propto a$ starting from

$$(\delta
ho /
ho)_{k,i} \equiv \delta_i \sim 10^{-4}$$

at the horizon crossing $R_* = 1/H_*$.

- Let DM stage be long enough to reach $(\delta \rho / \rho)_k \sim 1$
- a very small chance that sufficiently spherical and smooth overdensity of size R further collapses to BH of size $r_q = 2M/M_{Pl}^2$

$$\mathscr{P}_{BH} \approx 2 \times 10^{-2} \left(\frac{r_g}{R}\right)^{13/2} \approx 2 \times 10^{-2} \, \delta_i^{13/2}$$

A.Polnarev, M.Khlopov (1980,1981,1982,1985)

The natural choice: $V(\phi) \propto \phi^2$ is the simplest oscillator

• There are $(HR)^{-3} \simeq \delta_i^{-3/2}$ clumps of size *R* inside the Hubble volume at turnaround. The probability to have a BH there

$$\mathscr{P}_{BH,hor} \approx 2 \times 10^{-22} \left(\frac{\delta_i}{10^{-4}} \right)^5$$

is till very small

However, present-day Universe has many such regions !

$$N_{hor} = \left(\frac{H}{H_0}\right)^3 \left(\frac{a}{a_0}\right)^3$$

• the largest possible black holes formed right before the reheating

$$\textit{H}^2_{\textit{reh}} \sim \textit{Gg}_{*,\textit{reh}}\textit{T}^4_{\textit{reh}}/\textit{M}^2_{\textrm{Pl}}$$

• The probability to have a region *in the presently visible part of the Universe* where a black hole had been formed at the post-inflationary matter-dominated stage is NOT SMALL AT ALL

$$\mathscr{P}_{BH,0} = N_{hor} \times \mathscr{P}_{BH,hor} \simeq \left(\frac{T_{reh}}{3 \times 10^{-4} \, \text{GeV}}\right)^3 \times \left(\frac{\delta_i}{10^{-4}}\right)^5.$$

All models with long preheating are excluded

$$\mathscr{P}_{BH,0} = N_{hor} \times \mathscr{P}_{BH,hor} \simeq \left(\frac{T_{reh}}{3 \times 10^{-4} \,\text{GeV}}\right)^3 \times \left(\frac{\delta_i}{10^{-4}}\right)^5$$

Valid on the assumption that

- EW vacuum is metastable
- MD stage is long enough for perturbations to grow by a factor $\delta_i^{-1} \sim 10^4$
- produced BH are evaporated by present, that is $M_{BH} < 10^{14}$ g

Models with long preheating (e.g. R^2) are excluded

$$\mathscr{P}_{BH,0} = N_{hor} \times \mathscr{P}_{BH,hor} \simeq \left(\frac{T_{reh}}{3 \times 10^{-4} \, \text{GeV}}\right)^3 \times \left(\frac{\delta_i}{10^{-4}}\right)^5$$

Consequently

 The smallest BH are formed by the perturbations entering the horizon right after low-energy inflation inflation

$$ho_{\it inf} \lesssim rac{3\,M_{
m Pl}^6}{32\pi M_c^2} pprox (2 imes 10^9\,{
m GeV})^4, \quad \longrightarrow \quad H_{\it inf} \lesssim GeV$$

is safe from BH induced tunneling

• then low-temperature reheating is also preferable

$$T_{reh}\sim M_{\mathsf{Pl}}^{1/2} \mathcal{H}_{reh}^{1/2}\lesssim 10^{6}\,\mathsf{GeV} imes \left(rac{\delta_{i}}{10^{-4}}
ight)^{3/4}$$

Models with high-energy inflation must quickly reheat the Universe

$$T_{\text{reh}} \gtrsim 5 \times 10^{12}\,\text{GeV} \times \frac{\rho_{\text{inf}}^{1/4}}{10^{16}\,\text{GeV}} \times \left(\frac{\delta_{\text{i}}}{10^{-4}}\right)^{3/4}$$

Further refinement

$$\mathscr{P}_{BH,0} = N_{hor} \times \mathscr{P}_{BH,hor} \simeq \left(\frac{T_{reh}}{3 \times 10^{-4} \,\mathrm{GeV}}\right)^3 \times \left(\frac{\delta_i}{10^{-4}}\right)^5$$

Even at $(\delta \rho / \rho)_k \sim$ 0.1 some overdense region may by chance enter nonlinear regime

Press–Schechter formalism

density contrast dispersion

$$\langle \delta_R^2(t)
angle \equiv \sigma_R^2(t) = \int_{Ha}^{k_{max}} rac{dk}{k} \, \mathscr{P}(k,t) imes rac{9j_1^2 \, (Rk/a)}{\left(Rk/a\right)^2} \, ,$$

allows to estimate the probability to form a nonlinear clump

$$\mathscr{P}_{clump} = \int_{\delta_c}^{\infty} \frac{d\delta}{\sqrt{2\pi}\sigma_R} \exp\left(-\frac{\delta^2}{2\sigma_R^2}\right) \approx \frac{\sigma_R}{\sqrt{2\pi}\delta_c} \exp\left(-\frac{\delta_c^2}{2\sigma_R^2}\right)$$

- Clumps must be sufficiently smooth (hard to estimate)
- The smallest BH are formed by the perturbations entering the horizon right after inflation... ? ... very model-dependent

Observation of matter power spectrum

Black Hole production at preheating

Scalar perturbation spectrum in $m^2 \phi^2$ -inflation 1002.3278

Black Hole production at preheating

Higgs-inflation with inflection point 1705.04861

Further refinement

$$\mathscr{P}_{BH,0} = N_{hor} \times \mathscr{P}_{BH,hor} \simeq \left(\frac{T_{reh}}{3 \times 10^{-4} \, \text{GeV}}\right)^3 \times \left(\frac{\delta_i}{10^{-4}}\right)^5$$

Even at $(\delta \rho / \rho)_k \sim$ 0.1 some overdense region may by chance enter nonlinear regime

- Press–Schechter formalism for density contrast dispersion
- Assuming the spectrum remains flat at small scales

$$\mathscr{P}_{BH} \simeq 10^{-2} \times \sigma_{R,inf} \left(\frac{H_{reh}}{H_{inf}}\right)^{11/3} \exp\left(-\frac{\delta_c^2}{2\sigma_{R,inf}^2} \left(\frac{H_{reh}}{H_{inf}}\right)^{4/3}\right)$$

• And place stronger limits,

e.g. on the reheating temperature in models with high-energy inflation

$$T_{reh} \gtrsim 3 \times 10^{13} \, \text{GeV} imes rac{
ho_{inf}^{1/4}}{10^{16} \, \text{GeV}} imes \left(rac{\sigma_{R,inf}}{10^{-4}}
ight)^{3/4}$$

Outline

2 Black Hole induced tunneling

3 Black Hole production at preheating

Planck 2015 favors flat inflaton potentials

Dmitry Gorbunov (INR)

Bugaboo black holes

The power spectra of primordial perturbations

Conclusions

- A unique way to constrain the postinflationary reheating mechanism: inflaton coupling to the SM fields
- many motivated model are excluded in this way or e-folding number *N* is constrained
- EW vacuum is stable?,

because of uncertainties... in m_t

e.g. R²-inflation

- An evidence for New Physics in Higgs sector...?
- The claim that BH induce tunneling must be checked

another example is GW from inflaton clumps

