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Motivations

Roots

• Semiclassical gravity: The expectation value of the
stress-energy-momentum tensor should act as the
source of the gravitational field.

• Casimir effect: Long-distance van der Waals forces
can be calculated from the energy in the electromag-
netic field as a function of geometrical parameters.
Can this energy be localized?
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The scalar field near a flat reflecting plate

• Total energy shows a divergence absent in the EM
case.

• Similar divergences arise in EM for curved plates.
• Energy density calculations show the offending en-
ergy is concentrated at the surface of the plate.
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The cutoff approach

Presumably the Dirichlet boundary condition (or
perfect conduction, in EM) is unrealistic.
Real conductors are not perfect at high frequencies.

So, one might insert a factor e−ωτ in the integral over
frequencies. This gives finite and initially plausible
results. However:

There is a pressure anomaly!
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Principle of virtual work: The force on a test
surface should equal the decrease in the total energy
behind the surface as it moves a unit distance:

F = −dE/dL, or p ≡ 〈Txx〉 = −u ≡ −〈Ttt〉.
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z⊗ y

Without the cutoff, that is formally true, although the
integrals for F and E diverge.
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But with the cutoff, one gets

F = +
1

2

dE

dL

(

not (−1)
dE

dL

)

.

One may think of τ as it. That is, the cutoff involves a
Wick rotation of the Green function in the time
coordinate. Effectively this introduces a spurious time
dependence of G ≡ 〈φ(x

¯
)φ(x

¯
′)〉 so that the time

derivatives in E come out wrong.
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A soft wall

Surely the anomaly would not arise in a model that is
nonsingular from the start, with consistent Lagrangian
equations of motion.

For calculational ease, we study the scalar field with an
external scalar potential (or z-dependent mass):

ϕ = V ϕ, V (r) =

{

0, z < 0,

zα, z > 0.

This gives an increasingly steep wall near z = 1 as
α → ∞.

8



z

v

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........

.....................
.........
........
.......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
.......
.......
........

α = 1
α = 2

z0

λ0 •

In properly dimensioned variables, zα becomes
λ0(z/z0)

α (α = positive integer).
There is one independent length, (zα0 /λ0)

1/(α+2).
(Bouas, . . . , Wagner, arXiv:1106.1162)
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The components of the [VEV of the] stress tensor come
from the reduced Green function and its second
derivatives.

(

− ∂2

∂z2 + V (z) + κ2
)

gκ(z, z
′) = δ(z − z′).

And g can be constructed from basis solutions
(

− ∂2

∂z2 + V (z) + κ2
){

F
G

}

= 0,

with F (0) = 1, limz→+∞ F (z) = 0, and some arbitrary
independent choice for G.
(Milton, Phys. Rev. D 84 (2011) 065028)
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Outside the wall (z < 0)

Here the calculations were rather easy.
Energy density for α = 6:

(Murray, Whisler, et al., Phys. Rev. D 93 (2016) 105010)
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Inside the wall (z > 0): Renormalization

In addition to various technical difficulties, local diver-
gences proportional to V , V 2, V must be isolated and
renormalized. These can be handled within the WKB
approximation.

The renormalization theory in an arbitrary smooth
scalar potential can be developed by dimensional
regularization from the Schwinger–DeWitt expansion
(Mazzitelli, Nery, & Satz, 2011). But . . .
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For methodological consistency

• We use point-splitting in the spirit of Christensen
(1976) and Wald (1978) in curved space.

• We apply one-dimensional WKB theory to a poten-
tial that is an (arbitrary) function of z alone.

One gets divergent terms depending on δ−4, δ−2V (z),
V 2 ln(V δ2), V ′′ ln(V δ2), and some finite direction-
dependent terms of the same order in V and V ′′.
(δ → 0 covariantly generalizes the τ of before.)
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All terms proportional to V 2 and V ′′ are potentially
ambiguous. They must be adjusted covariantly to pre-
serve the conservation law, ∂µT

µν = − 1
2φ

2∂νV . As in
gravity, this forces a trace anomaly,

〈Tµ
µ 〉+ V 〈φ2〉 − 3

(

ξ − 1
6

)

∂z
2〈φ2〉 =

1

16π2
a2 ,

where the heat kernel coefficient a2 = 1
2

(

V 2 − 1
3V

′′
)

.
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All direction-independent, covariant terms in 〈φ2〉 and
〈Tµν〉 (proportional to 1, V , V 2, V ) can be absorbed
into “bare” terms in an equation of motion for V as a
dynamical field and the corresponding Einstein equa-
tion, respectively. This is so regardless of whether V is
taken to be a Klein-Gordon field (Fulling et al. 2012)
or the square of such a field (Mazzitelli et al. 2011).
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However, the renormalized energy density contains
terms like V 2 ln(V/µ2) that do not approach 0 inside
the wall (where z → ∞, V (z) → ∞). They can be
eliminated near any particular z by choosing µ = V (z).
This is reminiscent of the renormalization group in
perturbative QFT, but occurring in position space
instead of momentum space.

(Milton, Fulling, et al., Phys. Rev. D 93 (2016) 085017)
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Inside the wall (z > 0): Evaluation

Careful subtraction of the leading WKB terms under
the integral sign produces convergent integrals for the
finite remainder in the energy density and the pressure.
Both outside and inside, as predicted, there is no indi-
cation of a pressure anomaly.

However, to carry out such computations all the way
to numerical results requires non-WKB methods to
approximate the integrands in the regimes of small κ
and small z. That’s where we are now.
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(Merritt, Settlemyre, Fulling, Lujan, in progress)

We do our computations in Mathematica. (This sim-
ple model should not require advanced computational
resources.) Possible methods:

• Numerical solution of the ordinary differential equa-
tion for the basis functions (slow (for the machine);
conceptually uninformative).

• Analytical approximations to the basis functions and
normalization constants (usually less accurate; slow
(for the humans) — a year of work, still unfinished).
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We are working to adapt the perturbative and spline
methods that worked well in the exterior region.
• WKB at large κ
• Perturbation (power series) at small κ
• Some kind of smooth spline in between.
(Since we must integrate over κ to get u(z) and p(z), it
is natural to work at fixed z and vary κ.)

Well, it turned out they didn’t always work as well as
they did.
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In addition to the basis functions F (κ, z) and G(κ, z)
we need two auxiliary functions of κ alone:

• A normalization factor cF (κ) that relates the proto-

typical WKB behavior w−1/4e−
∫

w1/2

at infinity to
the chosen normalization of F at the origin (where
WKB has broken down).

• A scattering coefficient γ−(κ) that relates the solu-
tion H that decays as z → −∞ (needed in the Green
function construction) to a solution G that has nice
initial data at z = 0.
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For all these quantities we try to join the perturbative
solution at small κ to the WKB solution at large κ by
a bridging function Aκ+B
(or f(Aκ + B) with some function f of more plausible
concavity)
on the interval d1 < κ < d2, with A, B, d1, d2 chosen
to make the function and its derivative continuous at
both endpoints.
Solve linear equations for A and B, then find d1 and
d2 by Newton’s method applied to two nonlinear equa-
tions.
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Search for a “triple point” where the two nonlinear
functions are zero simultaneously. (Green = 0 plane)

Looks like we have a zero near (d1, d2) = (.46, .82).
Apply Newton’s method to get an improved point.
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Sometimes this works well.
(blue = pert, orange = WKB, green = linear spline)
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So we adopt this smooth, piecewise defined function:
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But sometimes the spline procedure works horribly.
(So we try another f(Aκ + B), or look for a different
approach.)
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To have a result to show, we reverted to the purely nu-
merical method (which has some problems of its own).
Tommy Settlemyre says, “This is something that re-
sembles the correct renormalized energy density.”
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Thanks to the organizers of this conference, and to all
of you for listening patiently to this progress report.
This is a toy problem, but we are determined to solve
it completely and well. Maybe one more year . . .
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