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Transport in Metapopulation Networks

Scale-Free Network: The power-law probability that a given node has k
links (order k) to other nodes: P(k) ∼ k−γ , γ ∈ [2, 3].

Figure : Barabási-Albert network,

(∗) Colizza and Vespignani, Phys. Rev.
Lett. 99, 148701 (2007).
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Mean field transport equation:

dNk(t)

dt
= −Ik(t) + k

∑

k′

P(k ′|k)
Ik′(t)

k ′

Nk : mean number of individuals in node of
order k ;
Ik : mean flux out of node of order k ;
P(k ′|k) : the probability of a link between
nodes of order k → k ′. For Ik(t) = λNk(t):

Nst
k = k

〈N〉

〈k〉

– well-connected nodes are more populous.(∗)

Human activity is not Poissonian!(†)
(†)A.-L. Barabási,
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Axiom of Cumulative Inertia in Network Theory

Axiom of Cumulative Inertia:

An individual’s escape probability from a node decreases with the
(residence) time T spent in the node.

This is an empirical sociological law. The escape rate γk decreases with
residence time

γk(τ) =
µk

τ + τ0
, µk , τ0 > 0

Probability density function (PDF) of a residence time is

ψk(τ) =
µk

τ + τ0

(

τ0
τ + τ0

)

µk

∼ 1/τ1+µk ,

Fedotov and Stage, Phys. Rev. Lett. 118, 9 (2017).
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Anomalous subdiffusive transport:

Mean square displacement of Brownian particle: < B2(t) >= 2Dt

Macroscopic transport equation:

∂ρ

∂t
= D

∂2ρ

∂x2
, x ∈ R
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Anomalous subdiffusive transport:

Mean square displacement of Brownian particle: < B2(t) >= 2Dt

Macroscopic transport equation:

∂ρ

∂t
= D

∂2ρ

∂x2
, x ∈ R

Mean square displacement for subdiffusion:

< X 2(t) >∼ tµ 0 < µ < 1

What is the macroscopic equation for the concentration ρ?
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Anomalous transport: fractional order PDE

Macroscopic equation for the concentration ρ:

∂ρ

∂t
= Dµ

∂2

∂x2

(

D1−µ

t ρ
)

, (1)

where the Riemann-Liouville (fractional) derivative D1−µ

t is defined as

D1−µ

t ρ =
1

Γ(µ)

∂

∂t

∫ t

0

ρ (x , u) du

(t − u)1−µ
(2)
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Anomalous subdiffusion: < X
2(t) >∼ t

µ 0 < µ < 1

• Subdiffusion is due to trapping inside dendritic spines

.

Non-Markovian behavior of particles performing random walk occurs when
particles are trapped during the random time with non-exponential
distribution.
Power law waiting time distribution

φ (t) ∼
1

t1+µ

with 0 < µ < 1 as t → ∞.
The mean waiting time is infinite.
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How Does the Axiom of Cumulative Inertia Affect the

Flux?

Instead of the classical flux Ik = λNk(t), the Axiom of Cumulative Inertia
leads to a flux

Ik =
1

Γ(1− µk)τ
µk

0

D1−µk
t Nk(t), for µk < 1,

D1−µk
t is the Riemann-Liouville fractional derivative.

Classical results are transient with no steady state.

Main result: ultimately all individuals are attracted to the node with
µk < 1.

The node’s mean residence time 〈T 〉 → ∞ (anomalous trapping).
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Anomalous Aggregation

What is happening inside the trapping (anomalous) node?
Consider the structural density of individuals at time t with residence time
τ , ntrap(t, τ).

ntrap (t, τ) →
N

Γ(1 − µk)Γ(µk)τµk (t − τ)1−µk
,

N is the total number of individuals in the network.
→ Most individuals have been there for a long time, or are new arrivals.

Is this realistic?
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Yes! Data: American MidWest
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Figure : Fedotov and Stage, PRL 118, 9 (2017)
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Conclusions

• The mesoscopic description of non-Markovian reaction-transport
processes on the network is still an open problem.
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