
On micro-states of 4-d Black Holes
and

their string origin

Massimo Bianchi
Physics Dept and I.N.F.N.

University of Rome, Tor Vergata

May 25, 2017



Recent papers

Black Holes from String Theory

M. Bianchi, J.F. Morales, L. Pieri, N. Zinnato “More on
microstate geometries of 4d black holes”
A. Addazi, M. Bianchi, G. Veneziano “Glimpses of black hole
formation/evaporation in highly inelastic, ultra-planckian string
collisions”
M. Bianchi, J.F. Morales, L. Pieri, “Stringy origin of 4d black
hole microstates”

Soft limits of Scattering Amplitudes

M. Bianchi, A. L. Guerrieri, Y-t Huang, C-J Lee, C-K Wen
“Exploring soft constraints on effective actions”
M. Bianchi, A. L. Guerrieri “On the soft limit of tree-level
string amplitudes”
M. Bianchi, A. L. Guerrieri “On the soft limit of closed string
amplitudes with massive states”



Plan of the Talk

Black Holes in GR and Information Paradox

String Theory and the Fuzz-ball Proposal

4-d BH micro-state geometries from string amplitudes

L, K and M solutions from open string condensates at
intersecting D3-branes

Multi-center ansatz, Bubble equations and ‘regularity’

Summary, conclusions and future directions



Introducing the Black Hole

Black Hole ≡ [M − J−(I+)]



Getting acquainted with the Black Hole

Schwarschild solution (c = 1, G = 1)

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr 2 + r 2dθ2 + r 2 sin2 θdφ2

r = 2GM = rS (coord. singularity): horizon H = M ∩ J̇−(I+)
In words: boundary of the causal past of null infinity
In practice: light/signal cannot escape to infinity

I Singularity Theorems: Trapped Surface ⇒ Singularity

I Cosmic Censorship: Singularity ⇒ Horizon

I Area Theorem: δAH ≥ 0 (... Raychaudhuri equation)

I No Hair theorem: stationary, asymptotically flat BH’s fully
characterized by mass M, charge Q, angular momentum J
(Kerr-Newman solution)



Black Hole Thermodynamics

Black Hole as a black body (kB = 1):

dM =
κ

8π
dA + ...

where κ = surface gravity, constant on (Killing) horizon

TBH =
κ

2π
=

1

8πM
, SBek−Hawk =

1

4
A

Yet negative specific heat ...
Where are the micro-states?

SGR+QFT (BH) = log(Nmicro−states) = log(1) = 0 (!!??)

In GR a BH does not emit.
Semi-classically: Hawking radiation, a BH evaporates!



Information Paradox

I Pure state enters into a BH.
I Emitted radiation is thermal (no information), but entangled

with BH.
I Emitted particles do not depend on the state of earlier

produced pairs (why? ...).
I BH completely evaporates: there is nothing to be entangled

with.
I At the end, only radiation in a mixed state ⇒ lost unitarity.



Information Paradox: Possible Resolutions

The paradox cannot be solved by adding small corrections to the
semi-classical computation and information cannot be recovered at
the last stages of evaporation.

I Loss of unitarity [Hawking]

I Remnants, Baby Universe [Susskind]

I Non Local BH-radiation interactions [Maldacena-Susskind, Raju-Papadodimas]

I Hairs in the asymptotic structure of space-time [Hawking, Perry,

Strominger; Dvali, Gomez, Lüst], ...

I The ‘horizon’ is no more in an “information free vacuum” [Lunin,

Mathur]

We will explore the last possibility. Rather than only solving an ad
hoc problem, this resolution emerges naturally from String Theory,
fitting into a bigger picture for Quantum Gravity.



Fuzz-ball Proposal [Lunin, Mathur, Bena, Giusto, Russo, Shigemori, Skenderis, Taylor, Turton, Warner]

Every (BPS) Black-Hole micro-state is dual to a smooth,
horizon-less (super)gravity solution. NO singularity
Quantum Gravity effects are horizon-sized due to huge phase space.
Would-be horizon carries information ... the paradox is solved.

Far away fuzz-ball resembles a BH: every micro-state has the same
asymptotic charges (M, J,Q) as the would-be BH.
The boundary of the region where micro-states differ from BH
satisfy S ≈ A/4. [S. Mathur (2005)]

Classical BH arises as “coarse-grained” description when only the
geometry outside the “horizon” is taken into account



BHs in String Theory: The Naive D1-D5

Black Holes in string theory can be constructed as bound states of
intersecting (Dp/M)branes. E.g. ‘small’ BPS BH in D=5

Brane t x1 x2 x3 x4 y5 y6 y7 y8 y9

D1 − . . . . − . . . .
D5 − . . . . − − − − −

Harmonic function rule: superpose the harmonics with an exponent
−1/2 for N directions and 1/2 for D directions

ds2 = (H1H5)−1/2(−dt2 + dy 2
5 ) + (H1H5)1/2(dx2

1 + . . . dx2
4 )

+H
1/2
1 H

−1/2
5 (dy 2

6 + . . . dy 2
9 )

F01m = ∂mH−1
1 F0...5m = ∂mH−1

5 eφ = H
1/2
1 H

−1/2
5

The D1-D5 system is U-dual to F1-P or D3-D3’



Naive D1-D5-P: Strong Coupling
Strong Coupling: Supergravity and “real” Black Hole in D = 5.
Small curvature at the horizon: gsQ >> 1.
Macroscopic (geometric) entropy SBH = 2π

√
Q1Q5QP

ds2 = (H1H5)−1/2[−dt2 + dy 2
5 + (HP − 1)(dt + dy5)2]

+(H1H5)1/2(dx2
1 + . . . dx2

4 ) + H
1/2
1 H

−1/2
5 (dy 2

6 + . . . dy 2
9 )



D1-D5 Fuzz-ball

ds2 = −(H1H5)−1/2[(dt + Aidx i )2 − (dy5 + Bidx i )2]

+(H1H5)1/2
4∑

i=1

dx2
i + (H1/H5)1/2

4∑
a=1

dy 2
a

H1 = 1 +
Q1

`

∫ `

0

dv

|~x − ~F (v)|2
H5 = 1 +

Q1

`

∫ `

0

dv |Ḟ (v)|2

|~x − ~F (v)|2

Ai =
Q1

`

∫ `

0

dvḞi (v)

|~x − ~F (v)|2
dB = ?4dA v = t − y5

E.g. circle: F1 = cos(2πv/`), F2 = sin(2πv/`), F3 = F4 = 0
Regular geometry! Coordinate singularity on the curve x i = F i (v)
resolved into K-K monopole: D1D5 fuzz-ball horizon-less and
regular! Throat of the hole ends in a smooth “cap”, whose shape,
determined by F (v) profile, discriminates different micro-states
(‘hairs’). Entropy Smicro = 2

√
2π
√

Q1Q5 from CFT or from
‘geometric quantization’ of the profile F (v) ∼ transverse
oscillations of the string in R4 in the F1-P ‘frame’



Naive D1-D5-P: Weak Coupling
Fuzz-ball proposal proven in the 2 charge case, yet ‘small’ BPS BH
with zero horizon area in the supergravity limit
Large BH’s require 3 charges in D = 5 or 4 charges in D = 4.
Weak Coupling: D-branes and open strings with gsQ << 1.
For BPS BH’s in D = 5: Smicro = SMACRO . [Strominger, Vafa (1996)]

For VT4 << R4
S1

, d = 1 + 1, N = (4, 4), gauge group U(Q1)× U(Q5).

Central charge c = nbose + 1
2 nfermion = 6N1N5, from (1, 5) strings.

For large charges, degeneracy given by C(H)ardy-Ramanujan formula:

d(QP) ∼ e2π
√

cQP/6 ⇒ Smicro = log(d(QP)) = SMACRO

But what are the micro-states in the gravity picture?



Part II
4-d BH micro-state geometries

from string amplitudes



Stringy Origin of 4d BPS Black Holes Micro-states

Enormous progress in 5-d [Bena, Giusto, Gibbons, Martinec, Russo, Shigemori, Warner, ...]

Much less known in 4-d !
Our goal: recover micro-state geometries in supergravity from the
underlying fundamental string theory description
In particular we consider bound-states of 4 stacks of (orthogonally)
intersecting D3-branes on T 6 in Type IIB
dual to D2-D2-D2-D6 in Type IIA or M2-M5-P-KK6 in M-theory

Brane t x1 x2 x3 y1 ỹ1 y2 ỹ2 y3 ỹ3

D30 − . . . − . − . − .
D31 − . . . − . . − . −
D32 − . . . . − − . . −
D33 − . . . . − . − − .

We will derive a 1:1 relation between open string condensates and
fields in the bulk for a large class of 4d BPS BH’s



Mixed Open-Closed Scattering Amplitudes

The micro-state geometries will be derived from mixed open-closed
disk amplitudes, computing the emission rate of massless closed
strings from open string condensates binding different stacks of
branes.

Closed String Fields

gMN , bMN , C
(4)
MNPQ

Open String Fields

µA, φi



From Amplitudes to Supergravity Fields

We will work at leading order in gs (disk), take all open string
momenta equal (or tending) to zero and the closed string
momentum k only in non compact space directions.

A(h, k) ∝
∫

d2+nz

VCKV
〈Wclosed(h, k); z , z̄)Vopen(z1) . . .Vopen(zn)〉

The relation is well defined only if the disk diagram cannot
factorize via the exchange of open-string states
Choose ‘polarizations’ of open strings in such a way that no
factorization diagram be allowed
The deviation from flat space of a closed-string field is extracted
from the string amplitude:

δφ̃(k) = − i

k2

δA(h, k)

δh
→ δφ(x) =

∫
d3k

(2π)2
φ̃(k)e ikx



Supergravity Solution: the Love-ful Eight
Type IIB supergravity equations (with φ = gs , C0 = C2 = B2 = 0)

RMN =
1

4 · 4!
FMP1P2P3P4 F P1P2P3P4

N F5 = ∗10F5 F5 = dC4

8 harmonic functions Ha = {V , LI ,K
I ,M}, I = 1, 2, 3 (STU model)

ds2 = −e2U(dt + w)2 + e−2U |d~x |2 +
3∑

I=1

[
dy 2

I

Ve2UZI
+ Ve2UZI ẽ2

I

]
C4 = α0·ẽ1·ẽ2·ẽ3+β0·dy1·dy2·dy3+

εIJK
2

(αI ·dyI ·ẽJ ·ẽK + βI ·ẽI ·dyJ ·dyK )

where · = ∧, εIJK (reduced) intersection form for 3-cycles in T 6,

ZI = LI +
|εIJK |

2

K JKK

V
, µ =

M

2
+

LI K
I

2 V
+
|εIJK |

6

K I K JKK

V 2

e−4U = Z1Z2Z3V − µ2V 2

∗3dw = Vdµ− µdV − VZI d
K I

V
, ẽI = dỹI −

(
K I

V
− µ

ZI

)
dyI



Harmonic Multipole Expansion

Setting `D3 = 4π gs (α′)2/VD3 = 1

LI ≈ 1 +
NI

|x |
V ≈ 1 +

N0

|x |
but K I ≈ cK I

i

x i

|x |3
M ≈ cM

i

x i

|x |3

Multi-pole expansion Ha(x) = ha +
∑∞

n=0 ca
i1...in

Pi1...in(x) with

Pi1...in(x) =

∫
d3k

(2π)3
e ikx P̃i1...in(k) P̃i1...in(k) =

4π in

n! k2
ki1 . . . kin

P(x)’s singular at x = 0, but for appropriate choice of ci1...in

infinite sum may produce a fuzzy and smooth geometry.
Three classes of solutions: L, K and M solutions related to 1, 2
and 4 open-string insertions on the boundary of the disk.
The “superposition” of L, K and M solutions produces SUGRA
micro-state geometries.



L Solution

L solutions are geometries that fall-off at infinity as Qi/r ,
corresponding to a single stack of branes.

V = L(x) M = K I = 0 LI = 1

At linear order in `D3 one finds:

δgMNdxMdxN =
δL

2

[
dt2 −

3∑
i=1

(dy 2
i − dx2

i − dỹ 2
i )

]
+ . . .

δC4 = −δL ∧ dt ∧ dy1 ∧ dy2 ∧ dy3 + A ∧ dỹ1 ∧ dỹ2 ∧ dỹ3 + . . .

with δL = L− 1 and A both of order `D3. One can take:

L = 1 +
`D3N0

|x |
+ . . . ∗3dL = dA



One-boundary Amplitude
Very well known result, modulo ‘untwisted’ open-string insertions

ANS−NS ,ξ(φ) =
〈

cc̄W
(−1,−1)
NS−NS (z , z̄)cV

(0)
ξ(φ)(z1)

〉
= i cNS tr(ER)ξ(k)

where E = h + b, R reflection matrix (+1 Neumann, −1 Dirichlet)

W
(−1,−1)
NSNS (z , z̄) = cNS (ER)MN e−ϕψMe ikX (z) e−ϕψNe ikRX (z̄)

V
(0)
ξ(φ)(z1) =

∞∑
n=0

ξi1...in ∂X i1 (z1)
n∏

a=2

∫ ∞
−∞

dza

2π
∂X ia (za)

with ξ(φ) =
∑∞

n=0 ξi1...inφ
i1 . . . φin and za = z̄a (open strings)

The asymptotic deviation from the flat metric can be extracted:

δg̃MN(k) =

(
− i

k2

) ∞∑
n=0

δANS−NS ,φn

δhMN
= cNS

ξ(k)

k2
(ηR)MN

After Fourier transform one finds agreement with SUGRA:

δgMN =

∫
d3k

(2π)3
δg̃MN = −1

2
(ηR)MN δL(x) and δbMN = 0 !

In particular, for a single D3 brane at position x = a: ξ(φ) ∼ e i aφ



K Solution

K solutions are geometries that fall-off at infinity as QiQj/r 2

K 3 = −M = K (x) µ = 0 LI = V = 1 K 1 = K 2 = 0

They are associated to fermionic bilinears localized at the
intersection of two branes and in general they carry angular
momentum.
At linear order in `D3 one finds (∗3dw = −dK ):

δgMNdxMdxN = −2 w dt − 2 K dy3dỹ3 + . . .

δC4 = (K dt ∧ dy3 − w ∧ dỹ3) ∧ (dy1 ∧ dỹ2 + dỹ1 ∧ dy2)

For example one can take K to be

K ≈ vixi

|x |3
w ≈ εijk vi

xj dxk

|x |3



Two-boundary Amplitude

ANS−NS
µ2,ξ(φ)

=

∫
dz4

〈
c(z1)Vµ̄(z1) c(z2)Vµ(z2) c(z3)W (z3, z4) Vξ(φ)

〉
where Vµ̄(z1) = µ̄A e−ϕ/2 SAσ2σ3 Vµ(z2) = µB e−ϕ/2 SBσ2σ3

〈
tr µ̄(AµB)

〉
=

1

3!
vMNP ΓAB

MNP ANS−NS
µ2,ξ(φ)

=
ξ(k)

3!
(ER)MNkP vMNP

with vMNP ∈ 10 of SO(6) (NO 6!!) e.g. for v3y3ỹ3 = −v12t = 4πv

δg2t = −v
x1

|x |3
δg1t = v

x2

|x |3
δgy3ỹ3 = −v

x3

|x |3



M Solution

M solutions are geometries that fall-off at infinity as
Q1Q2Q3Q4/r 3, associated to choice cM

i +
∑3

i=1 cK
i = 0, e.g.

K 2 = M = M(x) µ = M LI = V = 1 K 1 = K 3 = 0

δgMNdxMdxN = 2M (dy1 dỹ1 + dy3 dỹ3) + . . .

δC4 = −M dt ∧ (dy1 ∧ dỹ2 ∧ dy3 + dỹ1 ∧ dỹ2 ∧ dỹ3)

+w2 ∧ (dy1 ∧ dy2 ∧ dy3 + dỹ1 ∧ dy2 ∧ dỹ3) + . . .

with w2 = ∗3dM
In particular one can take the harmonic M to be ‘quadruple’

M ≈ vij
3 xi xj − δij |x |2

|x |5



Four-Boundary Amplitude
Insertion of four fermions µa,a+1 starting on D3-branes of type a
and ending on D3-branes of type a + 1 with a = 0, 1, 2, 3 (mod 4)
Even if each intersection preserves N = 2 SUSY (1/4 BPS), so
that each fermion µa,a+1 paired with its conjugate µ̄a,a+1, whole
configuration preserves only N = 1 SUSY (1/8 BPS).
The condensate is complex e.g. µ1µ2µ̄3µ̄4 6= µ̄1µ̄2µ3µ4

ANS−NS
µ4,ξ(φ) =

∫
dzd2w

〈
cVµ1 (z1)cVµ2 (z2)Vµ̄3 (z=z̄)cVµ̄4 (z4)WNSNS(w , w̄)Vξ(φ)

〉



Four-Boundary Amplitude

〈
trµ(α

1 µ
β)
2 µ̄

(α̇
3 µ̄

β̇)
4

〉
=

2πv ij

cNS I1
σαα̇i σ̄ββ̇j v ij ∈ (3, 3) of SUL(2)×SUR(2)

Need Z2 twist field correlator on the boundary of the disk

〈σ2(z1)σ2(z2)σ2(z3)σ2(z4)〉 = f

(
z14z23

z13z24

)(
z13z24

z12z23z34z41

)1/4

where f (x) = Λ(x)√
F (x)F (1−x)

with F (x) = 2F1(1/2, 1/2; 1; x) and

Λ(x) =
∑

n1,n2
exp {−2π

α′

[
F (1−x)
F (x) n2

1R2
1 + F (x)

F (1−x) n2
2R2

2

]
} ≈ 1

ANS−NS
µ4,ξ(φ)

=
[
(ER)[11̄] + (ER)[33̄]

]
kikj v ij ξ(k)

so that δg̃11̄ = δg̃33̄ = −2πiξ(k)v ijkikj/k2

Agreement with SUGRA solution to leading order in `D3.
One can even turn on different condensates to get new solutions

Õαα̇ββ̇ = trµ(α
1 µ̄

(α̇
2 µ

β)
3 µ̄

β̇)
4 or Ô(αβγ)β̇ = trµ(α

1 µβ2 µ
γ)
3 µ̄β̇4



Four Boundary: Some speculations on the entropy

In some sense, thanks to the presence of N = 2 SUSY
preserving D3aD3b pairs, the D34 more closely related than
D1D5P to D1D5 system. ‘Realistic’ four-charge case may
turn out to be simpler than three-charge case!

The number of disks with four different boundaries grows as
Q1Q2Q3Q4 = I4. One can attempt the calculation of the
entropy via geometric quantization by introducing suitable
profile-dependent harmonic functions, as in the D1-D5 case.

A family of asymptotically AdS2 × S2 × T 6 geometries has
been found and shown to be regular. Harmonic functions
written in terms of an arbitrary profile [Lunin (2015)]

H(~x) = hreg (~x) +

∫ 2π

0

dv

2π

1

|~x − ~F (v)|

√
1 +

(~x − ~F )~A(v)

|~x − ~F |2

For asymptotically flat solutions in 4d, no-go theorem: NO
non-singular solutions in GR. Either include higher-derivative
terms or get ‘generalised’ regularity in five or higher dimension



Part III.
Multi-center ansatz, Bubble Equations
boundary conditions and ‘regularity’



From 4 to 10 (or 11) dimensions and back: STU et cetera
4-dim MSTU = [SL(2,R)/U(1)]3 ⊂ E7(+7)/SU(8) =MN=8

LSTU∼U1U2U3 =
1

16πG

(
R4 −

3∑
I=1

∂µUI∂
µŪI

2ImUI
2 − 1

4
FaIabFb −

1

4
FaRabF̃b

)
10-dim uplift

ds2
10 = −e2U(dt + w)2 + e−2U |d~x |2 +

3∑
I=1

[
dy 2

I

Ve2UZI
+ Ve2UZI ẽ2

I

]
where ZI = LI + |εIJK |

2
K JKK

V , µ = M
2 + LI K

I

2 V + |εIJK |
6

K I K JKK

V 2 and

e−4U = I4(LI ,V ,K
I ,M) = Z1Z2Z3V −µ2V 2 = L1 L2 L3 V −K 1 K 2 K 3 M

+
1

2

3∑
I>J

K I K JLI LJ −
1

2
MV

3∑
I=1

K I LI −
1

4
M2V 2 − 1

4

3∑
I=1

(K I )2L2
I

11-dim uplift dsT 6 =
∑3

I=1 Z−1
I (Z1 Z2 Z3)

1
3 (dy 2

I + dỹ 2
I ) and

ds2
5 = − [dt + µ(dΨ + w0) + w ]2

(Z1 Z2 Z3)
2
3

+(Z1 Z2 Z3)
1
3

[
V−1(dΨ + w0)2 + V |d~x |2

]



Asymptotic geometry and charges
(Later on 16πG = 1)

M =
1

8πG

∫
S2
∞

?4 dξ(t) , J = − 1

16πG

∫
S2
∞

?4 dξ(φ) ,

Qa =
1

4π

∫
S2
∞

(Iab ?4 Fb −Rab Fb) , Pa =
1

4π

∫
S2
∞

Fa

Boundary conditions and charges for orthogonal branes

V ≈ 1 +
v

r
LI ≈ 1 +

`I
r

K I = M ≈ 0

M = v + `1 + `2 + `3 , P = (v , 0, 0, 0) , Q = (0, `1, `2, `3) , J = 0

Boundary conditions and charges for branes at angle

V ≈ 1+
v

r
LI ≈ 1+

`I
r

K 1 ≈ g +
k1

r
K 2 ≈ g K 3 = M = 0

M = v+`1+`2+`3,P = (v ,−g(`1+`2), 0, 0),Q = (0, `1, `2, `3), J = 0



Micro-state geometries

Multi-center Taub-NUT ansatz (ri = |~x − ~xi |, i = 1, ...N)
[Bena, Warner, Gibbons, Cvetic, Lu, Pope, ...]

V = v0+
N∑

i=1

qi

ri
, LI = `0I +

N∑
i=1

`I ,i
ri
,K I = k I

0+
N∑

i=1

k I
i

ri
,M = m0+

N∑
i=1

mi

ri

Near each center, R4/Z|qi |, asymptotically R3 × S1
Ψ

Geometry factorises, i.e. regular in 5-d (!), if near the centers

ZI

∣∣
ri≈0
≈ ζ i

I (finite) and µ
∣∣
ri≈0
≈ 0 (zero)

Absence of horizons and closed time-like curves requires

ZI V > 0 and e2U > 0

w closed exact form near the centres



Bubble equations
ZI finite near the centers if

`I ,i = −|εIJK |
2

kJ
i kK

i

qi
, mi =

k1
i k2

i k3
i

q2
i

µ vanishes near the centers if Bubble Equations are satisfied

N∑
j=1

Πij

rij
+ v0

k1
i k2

i k3
i

q2
i

−
3∑

I=1

`0I k I
i − |εIJK |

k I
0 kJ

i kK
i

2 qi
−m0qi = 0

with Πij = (qiqj)
−2
∏3

I=1

(
k I
i qj − k I

j qi

)
and rij = |~xi − ~xj |

Bubble equations imply absence of pernicious Dirac-Misner strings

∗3dw =
1

2

N∑
i ,j=1

Πij

(
1

rj
− 1

rij

)
d

1

ri
=

1

4

N∑
i ,j=1

Πij ωij

with ωij = (~ni + ~nij)·(~nj − ~nij)dφij/rij free of D-M strings along
lines between two centers, since numerator vanishes there



Scaling solutions

If the coefficients k I
i satisfy

v0 mi −
3∑

I=1

`0I k I
i + k I

0 `Ii −m0qi = 0

invariance under rigid rescaling of the positions of the centres

~xi → λ~xi

Multiplying (...) by the positions of the centers ~xi , the solution can
be shown to carry zero angular momentum

~J = m0 ~v2 − v0 ~m2 + `0I
~k I

2 − k I
0
~̀

2I = 0

in agreement with (Sen’s) expectations for micro-states



Fuzz-balls of orthogonal branes
Boundary conditions

`0I = v0 = 1 m0 = m = k I
0 = k I = 0

For qi = 1 (to avoid orbifold singularities, for simplicity)

P0 = N , QI = −
N∑

i=1

|εIJK |kJ
i kK

i

2

Bubble Equations (qi = 1!)

N∑
j 6=i

∏3
I=1(k I

i − k I
j )

rij
+ k1

ik
2
ik

3
i −

3∑
I=1

k I
i = 0

absence of horizons and of closed time-like curves requires

ZI V > 0 and e2U > 0

Configurations with one or two centers fail to meet the BPS
requirement QI > 0. Let us start (and end) with three centers



3-center case N = 3 = P0

k I
i =

 −n1 n2 −n1 n3 n1 (n2 + n3)
n3 n2 −n2 − n3

−n4 n4 0


scaling solutions: n2 = 0, n1 = 1, n3 = n4 = n

Q1 = Q2 = Q3 = n2 , any r12 = r23 = r13 = R

non-scaling solutions:
I n2 = 0, n1 = n3 = 1, n4 = n: r13 = r23 = R undetermined

Q1 = Q2 = n Q3 = 1 r12 =
2 n r23

2 n + (n − 1) r23

I n2 = n4 = n, n1 = 1, n3 = 2 n: r13 = r23 = R undetermined

Q1 = Q2 = n2 Q3 = 13 n2 r12 =
r23

10 + r23

I n2 = 0, n1 = 3 n, n3 = 2 n, n4 = n: r23 < 6 (2−
√

2) n2

Q1 = 2 n2,Q2 = 6 n2,Q3 = 3 n2, r12 =
12 n2 r23

12 n2−r23
, r13 =

6 n2 r23

6 n2−r23



Fuzz-balls of branes at angle

New boundary conditions

`0I = v0 = 1,m0 = m = k3
0 = k3 = k2 = 0, k1

0 = k2
0 = g , k1 = g(`1+`2)

Generalized bubble equations
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3-center case, P0 = 3, n1, n2, n3 positive integers, g rational

k I
i =

 0 −n1 n1 + g n3(n1 + n2)
n2 0 −n2

−n3 n3 0


Q1 = n2 n3,Q2 = n1 n3,Q3 = n1 n2 + g n2 n3(n1 + n2)



Some non-scaling solutions

I n1 = n2 = n3 = n = (2g)−1

k I
i =

 0 −n 2n
n 0 −n
−n n 0

 , r12 =
4 n2 r23

6 n2 − r23
, r13 =

4 n2 r23

3 n2 − r23

Q0 = 3 Q1 = Q2 = n2 Q3 = 2 n2 , r23 <
9−
√

57

2
n2.

I n1 = n2 = n, n3 = 2 n, g = (4 n)−1

k I
i =

 0 −n 2 n
n 0 −n
−2 n 2 n 0

 , r12 =
8 n2 r23

12 n2 + r23
, r13 =

8 n2 r23

6 n2 − r23

Q0 = 3 Q1 = Q2 = Q3 = 2 n2 r23 < n2
(
−11 +

√
145
)



Moduli space ... very preliminary

Non-compact in general. Yet, expect quantum effects to put a
lower bound on R (separation between two centres ∼ depth of AdS
throat) as well as an upper bound on R (energy gap of typical
excitations in CFT dual description)
Compact in the last cases. For the minimal case Q0 = 3,
Q1 = Q2 = Q3 = 2 get 12 choices of k I

i ... matches with
degeneracy of ‘small’ BH’s



Summary and conclusions



Summary

Precise dictionary between open string condensates and a
large class of 4-d BPS BHs, computing amplitudes of NS-NS
(R-R) closed strings in the presence of open string
condensates living on D3-branes and/or at their intersections.

L solutions fall as Qi/r and are associated to one boundary
amplitudes.
K solutions fall as QiQj/r 2 and are associated to two boundary
amplitudes (two twisted fermions)
M solutions fall as Q1Q2Q3Q4/r 3 and are associated to four
boundary amplitudes.
One would like to identify this contribution as the micro-states
of the four charge black hole.

Multi-center ansatz: bubble equations (generalised), boundary
conditions (M, Q, P, J) and “regularity” ... NO horizon, NO
singularity (in D = 5), NO CTC’s

Scaling vs non-scaling solutions for N = 3 = P0 and their
(non-)compact moduli spaces



Comments
I Information paradox: deep conflict between General Relativity

and Quantum Mechanics. Large BH entropy SBH = AH/4 vs
uniquess of BH’s for given M, Q and J.

I Unitarity violated: information neither visible at Horizon (null
surface: particles/waves fall in or dilute) nor coded in
Hawking radiation ... Need ‘new’ physics at putative horizon

I Success of String Theory in explaining microscopic origin of
BPS BH entropy, yet in a regime where classical BH
description not valid ... Need ‘horizon-sized’ and ‘horizon-less’
bound-states with same M, Q and J as classical BH:
‘fuzz-ball s’ or ‘micro-state geometries’.

I Only small fraction of expected ‘fuzz-balls’ known in 5-d and
even less in 4-d. Moreover, a-typical / not generic
micro-states: carry angular momentum (JLJR 6= 0 in D = 5,
J 6= 0 in D = 4), role in the ‘BH ensemble’ unclear. CFT
description only known in very few case.

I Smooth (regular) geometries in D = 5 but NOT in D = 4.
Need higher dim’s and/or higher derivatives i.e. String Theory

I



Future Directions

Generalize to D3-brane configurations with generic tilting on
orbifolds (e.g. T 6/Z3)

Compute the contribution to the entropy of the known
configurations (scaling vs non-scaling) and understand their
CFT (AdS) and/or Quiver Quantum Mechanics description
[Denef, Pioline, Manschoot, Sen, Garavuso, ...]

Apply similar techniques to scattering of more than one (=
two, at most) closed string (massive) states [Garousi, Myers, Klebanov,

Hashimoto, D’Appollonio, Di Vecchia, Russo, Veneziano, Turton, MB, Teresi, ...]

Construct new micro-state SUGRA solutions corresponding to
diverse choices of the open string condensates

Find regular non extremal and realistic (four-charge) geometries

Study fuzz-ball mergers and GW production ... experimental test of String Theory ?
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