1

Resonant dipole-dipole interaction of Rydberg atoms for quantum information

I.I.Beterov, M. Saffman, D.B.Tretyakov, V.M.Entin, E.A.Yakshina, G.N.Hamzina, S.Bergamini, E.A.Kuznetsova, C.Andreeva and I.I.Ryabtsev

Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Novosibirsk State University, 630090 Novosibirsk, Russia Novosibirsk State Technical University, 630073 Novosibirsk, Russia Open University, Milton Keynes, UK University Wisconsin-Madison, USA

Collaborators

Novosibirsk team Rzhanov Institute of Semiconductor Physics SB RAS Novosibirsk State University

Igor I. Ryabtsev (PI) Ilya I. Beterov Denis B. Tretyakov Vasily M. Entin Elena A. Yakshina

Silvia Bergamini

University Wisconsin-Madison, USA

Mark Saffman

Institute of Applied Physics RAS

Elena A. Kuznetsova

Vitaly Ginzburg

ON SUPERCONDUCTIVITY AND SUPERFLUIDITY

Nobel Lecture, December 8, 2003

by

VITALY L. GINZBURG

P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russia.

30 most important problems in physics

6. Second-order and related phase transitions. Some examples of such transitions. Cooling (in particular, laser cooling) to superlow temperatures. Bose-Einstein condensation in gases.

in [2]. The 'great problems' are, first, the increase in entropy, time irreversibility, and the 'time arrow'. Second is the problem of interpretation of nonrelativistic quantum mechanics and the possibility of learning something new even in the field of its applicability (I personally doubt this possibility but believe that one's eyes should remain open). And third is the question of live-

Pioneers of quantum computing

Yuri Manin

Richard Feynman

"Computable and Uncomputable", 1980

You need quantum automat to model quantum systems like DNA!

"Simulating Physics with computers", "Quantum mechanical computers", 1981

Outline

Quantum information with Rydberg atoms

- CZ gate using adiabatic passage of Förster resonances
- Rydberg experiment in Novosibirsk

Ginzburg Centennial Conference on Physics, 2017

What is a Rydberg atom?

Rydberg atom: n>>1

Rydberg formula (1888):

$$E_n = -\frac{Ry}{n^{*2}}$$

Johannes Rydberg

$$Ry_{Rb} = 109736.60672249 \,\mathrm{cm}^{-3}$$

Properties of Rydberg atoms

Hydrogen-like wavefunctions

Small binding energy $\sim n^{-2}$ (100 cm⁻¹ at n=100)

Large radiative lifetimes $\sim n^3$ (1 ms at *n*=100)

Large orbital radius $\sim n^2$ (0.5 um at *n*=100)

Transition frequency $\sim n^{-3}$ (10 GHz at *n*=100)

Polarizability $\sim n^7$

T.F.Gallagher "Rydberg atoms"

Motivation: quantum register with neutral atoms

Possible implementation of a quantum register:

Array of individually addressed traps loaded by single atoms (Madison, Palaiseau)

Motivation: quantum register with neutral atoms

Possible implementation of a quantum register:

Array of individually addressed traps loaded by single atoms (Madison, Palaiseau)

Single-qubit gates:

Raman laser pulses D. Yavuz et al., PRL 96, 063001 (2006) Microwave transitions T. Xia et al. PRL 114, 100503 (2015)

Motivation: quantum register with neutral atoms

Possible implementation of a quantum register:

Array of individually addressed traps loaded by single atoms (Madison, Palaiseau)

Single-qubit gates:

Raman laser pulses D. Yavuz et al., PRL 96, 063001 (2006) Microwave transitions T. Xia et al. PRL 114, 100503 (2015)

Two-qubit gates:

Rydberg blockade L. Isehhower et al., PRL 104, 010503 (2010) Interaction gates D.Jaksch et al., PRL 85, 2208 (2000); S. Ravets et al., Nature Physics 10, 914 (2014)

Quantum register with Rydberg atoms

Up to 49 qubits in University Wisconsin-Madison!

T.Xia et al., PRL 11, 100503 (2015)

Quantum register with Rydberg atoms

Up to 49 qubits in University Wisconsin-Madison!

T.Xia et al., PRL 11, 100503 (2015)

Problem: low fidelity of two-qubit quantum gates!

Two-qubit gate

CZ	CNOT
$ \begin{vmatrix} 00 \\ \to & 00 \\ 01 \\ \to & 01 \\ 10 \\ \to & 10 \\ 11 \\ \to & - 11 \\ \end{vmatrix} CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{vmatrix} $	$ \begin{vmatrix} 00 \\ \to & 00 \\ 01 \\ \to & 01 \\ 01 \\ \to & 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01$

CZ gate with Rydberg atoms

Ginzburg Centennial Conference on Physics, 2017

CZ gate with Rydberg atoms

CZ gate with Rydberg atoms

Advantage: Insensitive to fluctuations of interaction energy Disadvantage: Requires strong interaction

Advantage: Weak interaction energy Disadvantage: Sensitive to fluctuations of interatomic distance

Coherent coupling at Förster resonance

S. Ravets et al., Nature Physics 10, 914 (2014)

Coherent coupling at Förster resonance

S. Ravets et al., Nature Physics 10, 914 (2014)

Coherent coupling at Förster resonance

S. Ravets et al., Nature Physics 10, 914 (2014)

Key point

How to avoid the effect of fluctuation of the interatomic distance?

Outline

Quantum information with Rydberg atoms

CZ gate using adiabatic passage of Förster resonances

Rydberg experiment in Novosibirsk

CZ and CNOT with adiabatic passage

CZ and CNOT with adiabatic passage

Key point

What happens with the phase after double adiabatic passage?

Adiabatic rapid passage

Double adiabatic passage

Mixing angle:

$$\tan 2\theta = \frac{\Omega_0(t)}{\delta(t)}$$

Dressed states:

$$|I\rangle = \cos \theta |e\rangle - \sin \theta |g\rangle$$

$$|II\rangle = \sin \theta |e\rangle + \cos \theta |g\rangle$$

$$\Omega_{\pm}(t) = \delta(t) \pm \sqrt{\Omega_0^2(t)} + \delta^2(t)$$

$$S = \frac{i}{2} \int_0^T \Omega_{-}(t) dt$$

How can we control the interaction strength?

Chirped excitation with nonlinear detuning

Hamiltonian:

$$\hat{\mathbf{H}}(t) = \frac{\hbar}{2} \begin{pmatrix} -\delta(t) & \Omega(t) \\ \Omega(t) & \delta(t) \end{pmatrix}$$

Gaussian pulses with linear detuning:

$$\Omega_{j}(t) = \Omega_{0} \exp\left[-\left(t - t_{j}\right)^{2}/2w^{2}\right]$$
$$\delta_{j}(t) = s_{1}\left(t - t_{j}\right)$$

Constant energy and nonlinear detuning:

32

$$\Omega_{j}(t) = \Omega_{0}$$

$$\delta_{j}(t) = s_{1}(t - t_{j}) + s_{2}(t - t_{j})^{5}$$

• We need an isolated Förster resonance

Ginzburg Centennial Conference on Physics, 2017

Stark map for Cs

Förster resonances in electric field

Adiabatic passage of Förster resonance

Adiabatic passage of Förster resonance

CNOT truth table

rf field provides access for more resonances...

Scheme of CZ gate

RF assisted Forster resonance in Cs

$$80S_{1/2} + 80S_{1/2} \rightarrow 80P_{1/2} + 79P_{1/2}$$

Rf-assisted adiabatic passage in Cs

42

Bell states for Cs

$$\Phi^{+} = \frac{1}{\sqrt{2}} \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right)$$
$$\Phi^{-} = \frac{1}{\sqrt{2}} \left(\left| 00 \right\rangle - \left| 11 \right\rangle \right)$$
$$\Psi^{+} = \frac{1}{\sqrt{2}} \left(\left| 01 \right\rangle + \left| 10 \right\rangle \right)$$
$$\Psi^{-} = \frac{1}{\sqrt{2}} \left(\left| 01 \right\rangle - \left| 10 \right\rangle \right)$$

Outline

Quantum information with Rydberg atoms

CZ gate using adiabatic passage of Förster resonances

Rydberg experiment in Novosibirsk

Experiments in Novosibirsk

Experimental setup

MOT with cold Rb Rydberg atoms **Laser excitation 37P** 10 µm Ø -300 V λ₂=743 nm 743 nm, Tekhnoscan ring CW Ti:Sa **8S** ÷ **-6**P Rb **6S** 1366 nm, fiber-coupled DFB **5P 743 nm** 780 nm 1367 nm -300 V Ø 780 nm **5S** 46

Detection of Rydberg atoms

Selective Field Ionization

Rydberg atom in nL states ionizes in the critical field E_c

$$E_{\rm c} \approx 3.2 \cdot 10^8 \, n_{\rm c}^{-4} \, (V \,/ \, cm)$$

Key point

Our approach is based on counting of the number of atoms in each state after each laser pulse...

Timing diagram of the experiment

channeltron of the output for different average numbers of detected atoms per pulse

2.0

2.0

49

15

Stark-tuned Förster resonances

Fraction of atoms in 37S state for *N* detected atoms in all channels n (37S)

$$S_{N} = \frac{n_{N}(3/S)}{n_{N}(37P) + n_{N}(37S) + n_{N}(38S)}$$
₅₁

Key point

Non-accessible Förster resonances can be demonstrated using radiofrequency electric field ...

Ginzburg Centennial Conference on Physics, 2017

Förster resonances for $Rb(nP_{3/2})$

Ginzburg Centennial Conference on Physics, 2017

Electric Field

54

RF-assisted Förster resonances

Three-body Forster resonances

Three-body Forster resonances

Conclusion

- 1. We have developed schemes of two-qubit gates using adiabatic passage of Stark-tuned Förster resonances for Rydberg atoms
- 2. We have studied experimentally Stark-tuned Förster resonances

for ultracold Rb Rydberg atoms

1. I.I.Beterov, M.Saffman, E.A.Yakshina, D.B.Tretyakov, V.M.Entin, S.Bergamini, E.A.Kuznetsova, and I.I.Ryabtsev, "Two-qubit gates using adiabatic passage of the Stark-tuned Förster resonances in Rydberg atoms", Phys. Rev. A, 2016 v.94, p.062307;

2. 5. Ryabtsev, I.I., Beterov, I.I., Tretyakov, D.B., Entin, V.M., Yakshina, E.A., "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information", Physics-Uspekhi, 2016, v.59, p.196.;

3. E.A.Yakshina, D.B.Tretyakov, I.I.Beterov, V.M.Entin, C.Andreeva, A.Cinins, A.Markovski, Z.Iftikhar, A.Ekers, I.I.Ryabtsev, "Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field", Phys. Rev. A, 2016, v.94, p.043417.

Adiabatic passage of Förster resonance

Cs 90S+96S - 90P+95P

Förster energy defect

Ginzburg Centennial Conference on Physics, 2017

Stark map for Cs

61

RF-assisted adiabatic passage

Hamiltonian:

$$\hat{\mathbf{H}}(t) = \frac{\hbar}{2} \begin{pmatrix} -\delta(t) & \Omega(t) \\ \Omega(t) & \delta(t) \end{pmatrix}$$

Rf-assisted adiabatic passage:

$$\delta(t) \to \delta'(t) + \delta_0 + A\sin(\omega_{rf}t)$$

Using expansion for frequency modulation with $\delta_0 = \omega_{rf}$

$$\hat{\mathbf{H}}(t) = \frac{\hbar}{2} \begin{pmatrix} -\delta'(t) & \Omega(t)J_1(A/\omega_{RF}) \\ \Omega(t)J_1(A/\omega_{RF}) & \delta'(t) \end{pmatrix}$$

RF-assisted adiabatic passage

63

Ginzburg Centennial Conference on Physics, 2017

Observation of Floquet states

D.B.Tretyakov et al., arXiv:1404.0438

Observation of Floquet states

Laser spectroscopy of 37P, Rf modulation at 15 MHz 65

Ginzburg Centennial Conference on Physics, 2017

Förster resonances for Rb(nP_{3/2})

$\mathsf{Rb}(\mathsf{nP}_{3/2}) + \mathsf{Rb}(\mathsf{nP}_{3/2}) \leftrightarrow \mathsf{Rb}(\mathsf{nS}_{1/2}) + \mathsf{Rb}([\mathsf{n+1}]\mathsf{S}_{1/2})$

n	Δ_0	E _{cr}
	(MHz)	(V/cm)
35	382	4.5
36	228	3.1
37	105	1.9
38	5.6	0.4
39	-73	
40	-136	66

Förster resonance at different interaction times

Förster defect in Cs

68