Newton-Cartan	Gravity
000000	

Final Remark

0

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Beyond Newton-Cartan Gravity

Eric Bergshoeff

Groningen University

Ginzburg Centennial Conference on Physics

Moscow, June 2 2017

Newton-Cartan Gravity	Going Beyond NC Gravity	Final Remark
000000	0000	0

why non-relativistic gravity?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Going Beyond NC Gravity

0

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Holography

Gravity is not only used to describe the gravitational force!

Bagchi, Gopakumar (2009); Christensen, Hartong, Kiritsis, Obers and Rollier (2013-2015)

Final Remark

0

Condensed Matter

Effective Field Theory (EFT) coupled to NC background fields

serve as response functions and leads to restrictions on EFT

compare to

Coriolis force

Luttinger (1964), Greiter, Wilczek, Witten (1989), Son (2005, 2012), Can, Laskin, Wiegmann (2014)

Jensen (2014), Gromov, Abanov (2015), Gromov, Bradlyn (2017)

Newton-Cartan	Gravity
000000	

C

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Simons workshop 'Applied Newton-Cartan Geometry', March 6-10

Newton-Cartan	Gravity
000000	

Final Remark

0

Outline

Newton-Cartan Gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

Going Beyond NC Gravity

Final Remark

0

Outline

Newton-Cartan Gravity

Going Beyond NC Gravity

Going Beyond NC Gravity

Final Remark

0

Outline

Newton-Cartan Gravity

Going Beyond NC Gravity

Final Remark

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろへぐ

000000

Going Beyond NC Gravity

Final Remark

0

Outline

Newton-Cartan Gravity

Going Beyond NC Gravity

Final Remark

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Going Beyond NC Gravity

Final Remark

0

Non-relativistic Gravity

• Free-falling frames: Galilean symmetries

• Constant acceleration: Newtonian gravity/Newton potential $\Phi(x)$

 <u>no</u> frame-independent formulation (needs geometry!)

Riemann (1867)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Newton-Cartan	Gravity
00000	

▲日▼▲□▼▲□▼▲□▼ □ ののの

Galilei Symmetries

- time translations: $\delta t = \xi^0 \quad \underline{\text{but not}} \quad \delta t = \lambda^i x^i !$
- space translations : $\delta x^i = \xi^i$ i = 1, 2, 3
- spatial rotations: $\delta x^i = \lambda^i{}_j x^j$
- Galilean boosts : $\delta x^i = \lambda^i t$

$$\begin{split} & [J_{ab}, P_c] = -2\delta_{c[a}P_{b]}, \qquad [J_{ab}, G_c] = -2\delta_{c[a}G_{b]}, \\ & [G_a, H] = -P_a, \qquad [J_{ab}, J_{cd}] = \delta_{c[a}J_{b]d} - \delta_{a[c}J_{d]b}, \qquad a = 1, 2, 3 \end{split}$$

000000

Going Beyond NC Gravity

0000

Final Remark

0

'Gauging' Galilei

symmetry	generators	gauge field	curvatures
time translations	Н	$ au_{\mu}$	$\mathcal{R}_{\mu u}(H)$
space translations	P^{a}	$e_^a$	${\cal R}_{\mu u}{}^{a}(P)$
Galilean boosts	Gª	$\omega_^a$	$\mathcal{R}_{\mu u}{}^{a}(G)$
spatial rotations	J ^{ab}	$\omega_^{ab}$	${\cal R}_{\mu u}{}^{ab}(J)$

Imposing Constraints

 $\mathcal{R}_{\mu
u}{}^{a}(P) = 0$: does only solve for part of $\omega_{\mu}{}^{ab}$

 ${\cal R}_{\mu
u}({\cal H})=\partial_{[\mu} au_{
u]}=0\ o\ au_{\mu}=\partial_{\mu}\, au$: absolute time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

000000

'Gauging' Bargmann

symmetry	generators	gauge field	curvatures
time translations	Н	$ au_{\mu}$	${\cal R}_{\mu u}(H)$
space translations	P^a	$e_{\mu}{}^{a}$	$\mathcal{R}_{\mu u}{}^{a}(P)$
Galilean boosts	Gª	$\omega_^{\sf a}$	$\mathcal{R}_{\mu u}{}^{a}(G)$
spatial rotations	J ^{ab}	$\omega_{\mu}{}^{ab}$	${\cal R}_{\mu u}{}^{{\sf a}{m b}}(J)$
central charge transf.	Ζ	m_{μ}	$\mathcal{R}_{\mu u}(Z)$

Imposing Constraints

 $\mathcal{R}_{\mu\nu}{}^{a}(P) = 0$, $\mathcal{R}_{\mu\nu}(Z) = 0$: solve for spin-connection fields

 $\mathcal{R}_{\mu\nu}(H) = \partial_{[\mu}\tau_{\nu]} = 0 \rightarrow \tau_{\mu} = \partial_{\mu}\tau$: absolute time ('zero torsion') ・ロト・日本・日本・日本・日本・日本・日本

Going Beyond NC Gravity

Final Remark

0

(ロ)、(型)、(E)、(E)、 E、 の(の)

The NC Transformation Rules

The independent NC fields $\{\tau_{\mu}, e_{\mu}{}^{a}, m_{\mu}\}$ transform as follows:

$$\delta \tau_{\mu} = 0,$$

$$\delta e_{\mu}{}^{a} = \lambda^{a}{}_{b} e_{\mu}{}^{b} + \lambda^{a} \tau_{\mu},$$

$$\delta m_{\mu} = \partial_{\mu} \sigma + \lambda_{a} e_{\mu}{}^{a}$$

The spin-connection fields $\omega_{\mu}{}^{ab}$ and $\omega_{\mu}{}^{a}$ are functions of e, τ and m

Going Beyond NC Gravity

Final Remar

0

The NC Equations of Motion

The NC equations of motion are given by

Élie Cartan 1923

 $e^{\nu}{}_{a}\mathcal{R}_{\mu\nu}{}^{ab}(J) = 0$ $\mathbf{a} + (\mathbf{ab})$

1

 after gauge-fixing and assuming flat space the first NC e.o.m. becomes △Φ = 0

 $\tau^{\mu}e^{\nu}{}_{a}\mathcal{R}_{\mu\nu}{}^{a}(G) = 0$

• there is no known action that gives rise to these equations of motion

Going Beyond NC Gravity

0000

Outline

Final Remark

0

Newton-Cartan Gravity

Going Beyond NC Gravity

Final Remark

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Newton-Cartan Gravity	Going Beyond NC Gravity	Final Remark
000000	0000	0
	Torsion	

Torsion occurs both in Holography and in Condensed Matter

• Lifshitz Holography

zero torsion, i.e. $\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu} = 0$, is not conformal invariant

Christensen, Hartong, Kiritsis, Obers and Rollier (2013-2015)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Condensed Matter

non-relativistic energy-momentum tensor without restrictions requires arbitrary torsion

Luttinger (1964); Gromov, Abanov (2014); Geracie, Golkar, Roberts (2014); Jensen (2014)

Going Beyond NC Gravity

Final Remark

0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Twistless Torsional

• zero torsion: $\tau_{\mu\nu} \equiv 2\partial_{[\mu}\tau_{\nu]} = 0 \rightarrow \tau_{\mu} = \partial_{\mu}\tau$: absolute time

0000

• twistless torsional or hypersurface orthogonal:

$$\tau_{ab} \equiv e^{\mu}_{a} e^{\nu}_{b} \tau_{\mu\nu} = 0$$

is conformal invariant due to identity $e_a^{\mu} \tau_{\mu} = 0$

arbitrary torsion

Luttinger (1964); Chatzistavrakidis, Romano, Rosseel + E.B. (2017)

Going Beyond NC Gravity

0000

0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3D Non-relativistic Gravity

Extended Bargmann Symmetries

Papageorgiou, Schroers (2009); Rosseel + E.B., work in progress

$$[H, G_a] = -\epsilon_{ab}P_b , \qquad [J, G_a] = -\epsilon_{ab}G_b , \qquad [J, P_a] = -\epsilon_{ab}P_b ,$$

$$[G_a, P_b] = \epsilon_{ab}M , \qquad [G_a, G_b] = \epsilon_{ab}S$$

3D: Fractional Quantum Hall Effect, Anyons, Emergent U(1)

Newton-Cartan	Gravity
000000	

0000

0

3D Extended Bargmann Gravity

Rosseel + E.B. (2016); Hartong, Obers (2016)

3D extended Bargmann has invariant, non-degenerate bilinear form:

$$S = \frac{k}{4\pi} \int d^3x \left(\epsilon^{\mu\nu\rho} e_{\mu}{}^a R_{\nu\rho}{}^a(G) - \epsilon^{\mu\nu\rho} m_{\mu} R_{\nu\rho}(J) - \epsilon^{\mu\nu\rho} \tau_{\mu} R_{\nu\rho}(S) \right)$$

Non-Relativistic Limit

$$S = \frac{k}{4\pi} \int d^3x \left(\epsilon^{\mu\nu\rho} E_{\mu}{}^A R^A_{\nu\rho}(J) + 2\epsilon^{\mu\nu\rho} Z_{1\mu} \partial_{\nu} Z_{2\rho} \right)$$

Fractional Quantum Hole Effect: massive spin-2 GMP mode, bi-metric gravity, higher spins, W_{∞} -symmetry

Going Beyond NC Gravity

Final Remark

0

Outline

Newton-Cartan Gravity

Going Beyond NC Gravity

Final Remark

Going Beyond NC Gravity

0000

Final Remark

۰

Take Home Message

Newton-Cartan gravity is a rich field

with new links and cross-fertilization between

String Theory, Gravity and Condensed Matter!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●