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@ Recent years we are witnesses of a great progress in amplitude
calculations (including multiloop amplitudes; see reviews
[Bern, Carrasco, Dixon, Johansson and Roiban, Fortsch.Phys. 2011],
[Benincasa, Int.J.Mod.Phys. A 2014], and refs. therein)
an important part of which is related to the use of twistor-like and
(super)twistor methods, and with BCFW approach first developed for
tree gluon amplitudes in [R. Britto, F. Cachazo, B. Feng and E. Witten,
PRL2005] (see also [Britto, Cachazo, Feng, NPB05])
@ and generalized for tree and loop superamplitudes of N' = 4 SYM and
N =8SGin
@ Arkani-Hamed, Cachazo, Kaplan, JHEP 2010 [arXiv:0808.1446[hep-th]],
e Brandhuber, Heslop, Travaglini, PRD 2008 [arXiv:0807.4097 [hep-th]].

@ The list of important papers in this direction certainly includes

e Bianchi, Elvang, D. Freedman, JHEP 2008 [arXiv:0805.0757 [hep-th]],
e Drummond, Henn, Korchemsky, E. Sokatchev, NPB 2010 [arXiv:0807.1095],
@ Drummond, Henn, Plefka, JHEP 2010 [arXiv:0902.2987 [hep-th]],

and many others... (Sorry for missed references!)
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Main elements used in the D=4 superamplitude calculations are,
schematically,

@ spinor helicity variables (essentially four dimensional!)
@ on-shell superfields

@ superamplitudes=superfield description of the amplitudes=multiparticle
generalization of the on-shell superfields
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Higher D generalizations of BCFW

@ [Cheung and O’Connell JHEP 2009] generalization to D=6.

° [Caron-Huot+ O'Connell JHEP 10]: i) D=10 spinor helicity
formalism and ii) "Clifford superfield” description of tree D=10 SYM
superamplitudes (quite non minimal and it is not easy to use it).

@ The spinor helicity formalism from [Caron-Huot and O’Connell JHEP
2010] was mainly used in the context of type |1B supergravity:

[Boels, O’Connell, JHEP 12, Boels PRL 12, Wang, Yin, PRD 15].

@ In this talk, based on Phys.Rev.Lett.118(2017) [arXiv:1605.00036],
arXiv:1705.nnnnn and [paper in prep.], we describe the generalization of
the spinor helicity formalism, on-shell superfield description and the
BCFW relations\ for D=11 SUGRA and D=10 SYM \superamplitudes.

@ Actually we have proposed (and are elaborating) two approaches
o Constrained superamplitude formalism
and
e almost unconstrained analytic superamplitude formalism.
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PRL 2017 [arXiv:1605.00036], [arXiv:1706. in preparation], arXiv:1705.nnnnn

@ In more details:

@ The staring point of this work was the observation that 10D spinor
helicity variables of [Caron-Huot+O’Connell 2010] can be identified with
@ spinor moving frame variables [Bandos, Zheltukhin 91-95], [Bandos,
Nurmagambetov 96], ... or, equivalently, with
e D=10 Lorentz harmonics [Galperin, Howe, Stelle 91, Galperin, Delduc,
Sokatchev 91]
@ This observation was made independently in [Uvarov CQG 2016,
arXiv:1506.01881] and used their to develop 5D spinor helicity formalism.
@ This allowed us

o to find immediately the spinor helicity formalism for 11D amplitudes

o to propose a simpler constrained superfield formalism for superamplitudes of
D=10 SYM (constrained superfields versus Clifford superfields).

e and to develop the constrained superamplitude formalism for D = 11
SUGRA.

@ To propose the BCFW relations for 10D and 11D superamplitudes

@ To find an almost unconstrained analytic superamplitude formalism for
D = 11 SUGRA and 10D SYM [1705.nnnnn]].
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4D Spinor helicity formalism and BCFW

Bosonic spinors and spinor helicity formalism.

@ In the spinor helicity formalism for D=4 amplitudes

A(1,00) = APt £(1); -5 Py ) = A@) Atyi - -3 A Am)) -

the (light-like) momenta p,,(; and polarizations of the external particles
are described by the bosonic Weyl spinors Afjy = (X(;)*. In particular,

Pu)Oas = 2N May & Pu) = Mpoudp,  #=0,...3
where ajA are relativistic Pauli matrices, A= 1,2, A= 1,2, and
U#AAGHB'B =2¢5¢,, = Puip; =0 .

@ Introducing < ij >=< )\(,’))\(j) >= GAB)\G))\g), [Ij] = [5\(,‘)5\(,')] = GABS\?,-)S\(BI')
@ the simplest MHV amplitude [Parke & Taylor, PRL86] reads

AL n) =0t [ M Aag <>
T MO0 | 12> < (n—T)n><nl >

where the i-th and j-th particles are assumed to be of negative helicity.
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4D Spinor helicity formalism and BCFW

Helicity

@ The amplitude should obey the helicity constraints,
hiy A1, ...y n) = hAQL, ... n)

where h; is the helicity of the state, h; = 41 in the case of gluons, and

B A 0 YA o
2h(,) = )\(,) 8’\24,') ar A(,) 35\?” a

@ Thus the n-particle amplitudes are also characterized by n helicities. For
gluons these are +1 and the amplitude carries n sign indices,

A(,...,n) = A"t (1L n).

@ It can be shown that A" "(1,...,n) =0, A~ "*(1,...,n) =0,
@ so that the simplest maximal helicity violation (MHV) amplitude is

(54 <z )\A(i)S\A(i)) < Ij >4
i

MHV _jProetE=yasentr= A oootr _
AT (,..,n)=A i (1,...,n) R
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4D Spinor helicity formalism and BCFW

BCFW deformations

@ The BCFW recursion relations

Ap = ZAQ% A3 where T\ JT=(1,..n)

use the on-shell amplitudes depending on the deformed spinors, say

A SA SA A
Ny = My = My + 20(hy, Aln) = Ny = Al
A TA LA _3A _ _3A
A = M =, Xy = A%, = Xy — 23,

@ which implies the deformation of 1st and n-th momenta

Py = Pen(2) =Py + 207, Py~ PAy(2) = Py — 25,
9°92a=0, pHga=0, pga=0.

The deformed momenta are generically complex but remain light-like,

- —

Pl Pma=0,  PiP)a=0.




4D superamplitudes
oooe

4D Spinor helicity formalism and BCFW

BCFW recurrent relations. Explicit form.

@ The BCFW recurrent relations for tree amplitudes of D=4 gluons read

(o1, p2, .. ZZA D (pi (2); - pi; Pry(21)) x

1

(Ps,))? A(j;lﬂ)(_PZ/(zl)aPm; ..ipn(2)))
1

where h is the helicity of intermediate state with ,‘5{,(2,),

PE=—3ph and Pi(2)=- 3 ph(2)

{(/+1)
° Z is the sum over / and over distributions of particles among Ai" )

° The specific /-dependent value of the complex parameter z,

Z = Pglpf/3/2P§/‘7b

@ is such that (15%(2,))2 = 0| = r.h.s. contains on-shell amplitudes.
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4D Spinor helicity formalism and BCFW

Superamplitudes and on-shell superfields for ' = 4 SYM and /' = 8 SUGRA

@ One can also collect the n-particle amplitudes of the fields of SYM
(SUGRA) in the superfield amplitude (superamplitude)

.A(1,, n) = A()\(1),5\(1),7’](1); eees A(n)yj\(n)un(n)) s

depending on n fermionic 7]8-) = (7lq»)™ in fundamental rep. of SU(4)
(SU(8)),qg=1,...,4(...8).

@ This is possible because the on-shell states of the maximal SYM
(SUGRA) multiplet can be collected in an on-shell superfield

O\, 0%) =0 g + 50T spg + .+ 7nd W gy I

chiral superfield on an on-shell superspace of super-helicity s = %

~ - - A —A
oy Xn®) = so %) |, Fi= —IMZ + 41X 2 4 7y

@ The N = 4 (8) superamplitudes obey n superhelicity constraints

) _ - N
hi A Ay }) = SARAD Aap i) s 8=
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4D Spinor helicity formalism and BCFW

The power of superamplitudes for N' = 4 SYM

© SUSY Ward identities Qag.A({ Ay, Ay, m(y}) = 0, QIA(...) =
immediately imply that

A*"'*({A(/)75\(f)}):/HdN”" A0, X mp}) =0 and

n—1
AT (A, A ) = /H i dNin Al .. a1y, i) = O
i=1

@ and also fix the form of tree MHV superamplitude of N' = 4 SYM
54 Mo X)) (3 Myl

<12>..<nl >

AV (N N iy} =oc

[Nair, PLB 1988].
@ The MHV amplitude can be obtained from MHV superamplitude as

A+4..+77({)\ )\(,)} /Hdand 77/7 1) d nn A(771a.- T(n—1) 77n)
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BCFW for superamplitudes of A" = 4 SYM and A/ = 8 SUGRA

BCFW relations for superamplitudes

@ In the BCFW-like recurrent relations for tree superamplitudes of AV = 4
SYM and N = 8 supergravity [Brandhuber, Heslop, Travaglini, PRD
2008, Arkani-Hamed, Cachazo, Kaplan, JHEP 2010].

A Ky m1s . Ky ) =

_ _ 1
= dNn.A“+ Ki,m1; K2, m2; - - . Ko, i Psy(21),m) X
Z/ ( (2 e
} AL (= Py (1), 75 Kt sty - - 3 Koty Tin—1; Ky 770) -

@ the deformations of the bosonic spinors

—

IA _ L\A A IA _ A A
Ay = Xy T 2Ny, Alyy = Ay = 22

@ is supplenented by the deformation of fermionic n? = (74)",

——

,,(Z)—ﬂ +Z77(1 77?1)(2):77?1) .

@ New issues (w/r to bosonic BCFW): Z [ dVn, and

/g(z) = nf’n) + znfq) which mixes gluon and gluino amplitudes.
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Q Spinor frame and spinor helicity formalism for 11D SUGRA and 10D SYM
@ D=11 spinor helicity formalism and spinor moving frame
@ Massless momentum and spinor moving frame in any D
@ 10DSYM and 11DSUGRA in spinor helicity formalism
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame in D=11

@ In D=4: ,D“(,')U:A = 2)\A(i))\,}:\(,') = Puiy = )‘(/)UM)‘(I')-
@ Similarly, the light-like k; of a massless 11D particle can be expressed by

kariﬁ = 2/3#‘/0;7‘/5; ) ‘ P#Vc; raV; = Kalgp ‘»

in terms of ’energy variable’ p* and

@ a set of 16 constrained bosonic 32-component spinors ,
q,p=1,..,16, « = 1,...,32 which can be identified with

e D=11 spinor moving frame variables
[Bandos, Zheeltukhin 92, Bandos 2006-2007]
o 11D Lorentz harmonics [Galperin, Howe, Townsend NPB 93].

@ Essentially, the constraints on v, are given by the above equations

supplemented by | v,qC*’v,, =0

@ and by the requirement that the rank of 32 x 16 matrix v, is = 16.
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame variables in D=11

@ One can show that (roughly speaking) in the theory with local
SO(1,1) ® SO(9) symmetry, | v, | 0beying the above constraints

UzTes = 2p" v Vg s Vg TaVp = U3 0qp , Vog C*’ Vgg =0

(uz = ka/p™) can be considered as homogeneous coordinates on s,
the celestial sphere of a D=11 observer,

— - SO(1,10)
{Vag} =§° |. (SQ*[30(1,1)®SO(9)1@K9>

Spinor moving frame and spinor helicity formalism

@ One can check that, due to the above constraints the momentum k,

(= p*u3) is light-like

@ and that v,q and v5 * = —iC*’v, obey the Dirac equations

Kl 2*Pvge™ =0 & kal2pv;” =0.
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D=11 spinor helicity formalism and spinor moving frame

11D Spinor helicity formalism

@ The 11D counterpart of the 10D spinor helicity variables of Caron-Huot
and O’Connell are Aag = \/p" Vag;

@ the 11D counterpart of the polarization spinor of the fermionic field is
Xg = /pFvg ™ = —iC%? Agq (= (A§)").
@ The constraints on v,,, can be written in terms of A,

kariﬂ = 2)‘51‘7)‘/3177 )\qfa)\p = kaéqp ACA=0

@ Then why we need p* and v, = Aag/+/p#?

e The geometric and group theoretic meaning of v,,4 is much more clear.

e p# and its canonically conjugate coordinate x= will play an important role in
the construction of on-shell superfields and superamplitudes.

@ In particular the D=11 counterpart of the on-shell superspace is

R 5 {(x7, Vagi0g)}

with bosonic sector R @ S® including R = {x~} and S° = {v.g}.
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D=11 spinor helicity formalism and spinor moving frame

Brink-Schwarz superparticle and spinor moving frame

@ But where such seemingly strange spinor frame variables come from?

@ To understand this it is useful to discuss massless superparticle model.

@ To start from Brink-Schwarz action which does exist in any dimensions
and to follow the way to the Ferber-Schirafuji-like spinor moving frame
formulation.

@ The quantization of superparticle in its spinor moving frame formulation
leads us to an appropriate on-shell superfield formalism which can be
then generalized to superamplitudes.

@ Here we just briefly describe the results of this procedure
@ starting from a few more details on spinor frame
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Spinor frame VD

Vector frame attached to light-like momentum

@ A particular solution of the mass shell conditions kzk? = 0 is given by
ka=p(1,0,...,0,—1)

@ Any other solution can be obtained from this (or from the reflected one)
by performing a 7-dependent O(1, D — 1) Lorentz transformation

u(r) € 00,0-1) & uu" =4O = diag(+1,-1,.., 1),
@ so that the general solution of the mass-shell constraint p,p? = 0 is
Ka = Uéb)P(b) = P(Ug - UéD_U) = P#(T)Ua:(T)»

@ By construction, the vector uz () = (13 — u{®~") is light-like.
e Itis convenient to write the frame matrix u{”(r) € SO(1, D — 1) in terms
of this 3, its complementary light-like uZ? () = (u2 + u?~") and ul,

U — <% (u§+uf)7 ué,%(uf—uj)) € SO'(1,D-1).
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Spinor frame VD

Frame variables= Vector Lorentz harmonics

@ The defining relation for the moving frame matrix or the matrix of
vector Lorentz harmonics (or light-cone harmonics) [Sokatchev 86]

Ul = (% (u§+uf), u;,%(uf—ua:)) e SO'(1,D—-1),

is equivalent to ul? ua© = @) (see [E. Sokatchev, 86,87]), i.e

uu= =0,
ufudt =0, uu =2,
U; a= =0 = U; a# , ul UaJ 751‘]
b 1 _ uo* 1 I bl
and 0a Eua + 2ua — upu™ .

@ Resuming: a frame can be attached to a light-like momentum by setting

k=rar]
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Spinor frame VD

Moving frame variables=SO(1,D — 1) /[SO(1,1) ® SO(D — 2)] K Kp_»

@ The splitting of uY is manifestly invariant under SO(1,1) x SO(D — 2)
so that in a model with this gauge symmetry the vector harmonics=
homogeneous coordinates of the coset 5?7\ 808—2)

= # I _ SO(1,0—1
{Ua,Ua7Ua} = W

(E.g. moving frame formulation of superstring [Bandos, Zheltukhin 91,92])

@ In the model involving only u; (massless superparticle), the gauge
symmetry increases to [SO(1,1) x SO(D — 2)] « Kp_» where Kp_» is

Uz — Ug, uf — uf + Tuz (K*? + ubK*,
! ! 1,= 1
Uz = Ug(jy + 5 Ugj) K#',

@ and the set of harmonic variables parametrize a compact coset

— % N S0(1,0—1) D2 —1 _ aD-2
{(uz,uf,uz)} = [S0(T,1)x 50(D—2)[&Kp_2 =S or {Ua}—S

[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91].
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Spinor frame VD

Spinor moving frame = \/moving frame

@ Spinor moving frame = /moving frame is defined by conditions of
Lorentz invariance of D-dimensional '* and also C,; if such exists,

@ i.e. is defined by a matrix V € Spin(1, D — 1) which obeys

VIV =P,  VITOV=Fu
vev’ = c, for D in which 3C .
@ The SO(1,1) x SO(D — 2) invariant splitting of the spinor moving frame
matrix, corresponding to u{® = (up, uf’, ub), is

v = (V+

e v(;,) € Spin(1,D—1),

where g and g are indices of the spinor representations of SO(D — 2),
which can be different, like s-spinor and c-spinor in D=10,

D=10: a=1,.,16, g=1,...8, g=1,...8,

or the same, as in D=11,

D=11: a=1,.,32, g=q=1,.,16, v}i=v}.

agq —
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Spinor frame VD

Inverse spinor moving frame matrix

@ The rectangular blocks of the spinor moving frame matrix, v, and VOI';
are called spinor moving frame variables or spinor harmonics
(spinorial Lorentz harmonics).

@ When the charge conjugation matrix exists, the elements of the inverse
spinor moving frame matrix

+a

v, .
Vigy = <Vf7_a> € Spin(1,D — 1)
q
can be costructed from the harmonics VJ‘; and v,,. For instance,

D=11:  Vag =iCusVq”,  Vay = —iCapvi®

@ When the charge conjugation matrix does not exist, like itisin D = 10
(MW representation), these are defined by the conditions

+a,, — __ +a,, +
Vg “Vap = dgp Vg Vap = 0,
— - _ =@, S
Vy “Vaq = 0, Vg Vap = Oggp »

or equivalently, V¥ V()" := v(;"’vqH + Vg vy T =43,
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Spinor frame VD

@ With the suitable representation for F—matrices, the constraints
VIpVT = U@, VIF@V = u® can be split into
UzTas =2Vag Vag Vg TaVy = Uz 0gp,
, UETE s = 2Vag Vg™, vifavy = ufog,

Ira — T —
Uslap = 2Valg YagYis)g > Vg TaVy = Uagp -

ForD=11g,p=q,p =1, ..., 16 are spinor indices of SO(9) and
Yoo = pq is the SO(9) gamma matrix;

for D=10 ~,, =: 4, are Klebsh-Gordan coefficients of SO(8),
g,p=1,...,8 are s-spinor (8s) indices, g,p = 1, ..., 8 are c-spinor (8c)
indices and I=1,.., 8 is SO(8) vector index (8v-index).

In our perspective the especially important among above relations are

—r-a — — — — =
Uz Tap =2Vaq Vpg Vg MaVp = Uz 0gp

which allow to state that v,,4 is a square root of uz
@ in the same sense as in D=4 one states \x "=" \/Pa (PMUZA =2Xa)y).
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Spinor frame VD

D=10 vs D=11 spinor frame formalism

@ In D=10 the above should be completed by egs for inverse harmonics,

=raaf __ —a,,—B - T — S
uz = 2v(.7 vy Vy TaV, = Ua dap 5
ra # o +a 4 AF + o #
Fafuf =2viovg? VgTaVy = U3 dgp
— + I —(a I +B) _ _faaB, |
Viy ravp - 7ua’7pc'; ) 2Vq YqqVq =T us .

while for D=11 v, * = v * = —iC*?v,, and these equations are not
independent.

D=10 vs D=11 spinor helicity formalism

@ The D=10 spinor helicity variables of Caron-Huot and O’Connell is
Aag = / p** Vg carrying 8s index, while the polarization spinor is
Ay =V p*V, * which carries 8¢ spinor index of SO(8).

@ This is in contrast to 11D, where the polarization vector actually
coincides with the spinor helicity variable A = \/p# vy * = —iC*" Agq.
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=10 SYM in spinor frame form of spinor helicity formalism

@ The polarization vector of the vector field can be identified with v} so that
the on-shell field strength of the (D=10) gauge field

D=10: Fu=hkauy'w', a=0,1,...,9, [=1,..8
is characterized by an SO(8) vector w'.
@ The linearized on-shell spinor field
D=10: x"=v,"¢q, g=1,...8,

is characterized by a fermionic SO(8) c-spinor ).

@ The on-shell d.o.f’s of SYM «+ w' = W/(p*, v.g), ¥q = 14(p*, Vag) OF,
making Fourier transform wir to p#, w'(x=, v5 ) and 1q(x~, vg ).

@ Supersymmetry acts on these 9d fields by

(54[157 =€ q’yqq w, oW = 2ie q’yqqaz’gbq,

where € T=€"yq -
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=11 SUGRA in spinor frame/spinor helicity formalism

@ The linearized on-shell field strength of 3-form gauge field
D=11: Fapq = kallp'Uc’ug &1,  @=0,1,..,10, I=1,..,9,

is expressed in terms of antisymmetric SO(9) tensor ®x (= Auk).

@ lts superpartners ~y—traceless W, and traceless hyy, are used to make a
decomposition of linearized on-shell 11D graviton and gravitino fields,

D=11: Vo = Kalb Ve “Vig,  7pV¥p =0,
hab = u('aug)hu 9 h// =0.

These fields will appear as independent components of a constrained
on-shell superfield.
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e Constrained "on-shell superfield” formalism for 10D SYM and 11D SUGRA
@ On-shell superfield description of 10D SYM and 11D SUGRA
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield description of D=10 SYM

@ The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield W, obeying

DiVy=~5V', qg=1,..8, g=1,.8, I=1,.,8.
@ The consistency of this eq. requires
Dy V' = 2in},0-W, .

@ = there are no other independent components in the constrained
on-shell superfield Wq(X=, 05, Vaq ™), but ¢4 = 140 and w' = V/|q.
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield description of D=10 SYM

@ The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield W, obeying

DiVy=~5V', qg=1,..8, g=1,.8, I=1,.,8.
@ The consistency of this eq. requires
Dy V' = 2in50-V, .

@ = there are no other independent components in the constrained
on-shell superfield Wq(X=, 05, Vaq ™), but ¢4 = 140 and w' = V/|q.

Indeed,

W (x=,vg 1 0g) = dg(x=, vg )+ 91;7!7&; w!(x=) +

4 \ k _
+ 30 (—4) B (0 hrho) (00 (i k=) (0 Yeap +

A\ k
+ 3 (~4) mertmiorrm 0 71E07) . (0=h-rkom)(Fhk . shorhylom) (0w
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfields of 11D SUGRA

@ In[A. Galperin, P. Howe, P. Townsend NPB1993] the linearized 11D
supergravity was described by a bosonic superfield

oMK = olMKl(x= 0., vag™) which obeys

Do = aifus,  pup=0,  {ALKTT

where 7}, = 75, are d=9 Dirac matrices, v'v/ +~7y' = 6"Isx16, and

. ) L0
Dgza;+2/9q0:z%+2/0qa?

obeying the d=1, N' = 16 supersymmetry algebra

{D;> D;} = 4i0qp0-
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield equations of linearized D=11 SUGRA

e The consistency of D} ®“¥ = 3irlswil requires, besides v/, W} = 0, that

1
18

with symmetric traceless SO(9) tensor superfield Hiy = Hy), obeying

DIl — ( WKL | g gl KL]) O_ ™ 4 20_Hyd,

Dy Hy = inp¥y), Hy=Hy, Hi=0.

@ These superfield equations (actually any of these three) can be

considered as a counterpart of helicity constraint he = ho imposed on
the D=4 on-shell superfield.
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield equations of linearized D=11 SUGRA

@ Back to D=11 supergravity, we find convenient to collect all the on-shell
superfields in one object

Vo(X™, Vagibg ) = {Vig, Pruky» Hwy }
with multiindex Q taking 128(=144-16) 'fermionic’ and 128=84+44

‘bosonic values’,
Q= {lq,[UK], (M)}

(gamma-tracelessness and tracelessness are implied!),
@ and to write all the equations for them,

1
3
Dy o =3irlwil | DiHy = Vv,

D(T\IJ;,: ( IJKL+661[J KL]) a:¢JKL+28:HU%/p7

in the unique form

DyWq = AqepVp.
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On-shell superfield description of 10D SYM and 11D SUGRA

Fourier transform of the linearized 11D SUGRA equations

@ After making Fourier transform
# =) — | = P # = — =i
Va(p™, Vagi 0 ) = > dx™ exp(ip” X~ ) Vo(X™, Vagi g )
o the superfields obey the same D Wq = AgqpWp but with O — —ip",

Df =05 +2p%0; .

@ As all Agqp are now algebraic, passing to Fourier image makes natural
to choose the fermionic superfield and its equation as fundamental

io# .
Darwllj _ 7% (,YIJKL + 65/[J,YKL]) qp(DJKL . ZIP#H/J’Y?;’,,

@ We can define our 11D superamplitudes by generalization of this
equation,

@ but more convenient way is to start from one of the bosonic
superamplitudes.
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10D and 11D superamplitudes

10D superamplitudes

@ The on-shell n-particle superamplitudes are functions on a direct product
of n copies of the on-shell superspace.

@ The basic superamplitude of 10D SYM
A§1")',n(k1,01_; i kn,0p) = Ag")u/n(pf; Vgt Og1i i pﬁ; Vani 9an)

carry n bosonic, 8v indices of SO(8) and obeys

o # a0 +_ 0 4o
D+A = 2P 7’(1&'7“4/1..4/],15;/”14.4/” , Dy = a0, + 2] 0y

@ Selfconsistency of this equation requires equations for AS:")”,H%H
and for amplitudes with higher number of fermions.

@ ltis convenient to introduce a notation with multi-indices Q; = {g;, /;} and
resume all these equations in one

+ _
DgAaq..q..q = ()7 AqepAq..P..q-

@ Aq qp, can be read off the equations for on-shell superfields,
Ay = 2pj# 'y’iqq etc.
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10D and 11D superamplitudes

11D superamplitudes

@ The on-shell n-particle scattering amplitudes of 11D SUGRA

AG b, 07 ko, 07) = AG) o (ofF Ve Oy i B Vapi ) s
carry n multi-indices Q = {/q:, [IiJ/K]], ((/iJ))) } and obey
)/
FYpl,q,A“J(,)q(,).“ =0,
D;(/)Amo(om = (_)):IAQ/qP(,)A.“P(,)...,

@ Aq,qp, can be read off egs. for on-shell superfields,
@ and X, = # of fermionic, /;g;, indices among Q, ... Qq_1), i.e

=1 £(Q) K1) =0—= J:
_ (== e(liKiD)=0=e(((};))))) »
=5 =g, {Qei T

@ In particular, when Q, = I;p;, this equation reads

b +(l _ i # (n)
(=)™ D o hpyeQn = PO quQ1 AUdp)---Qn
i # [ KL I[Jy ~ KLl (m)
7ﬁp(/) (’Y” ”+661[/ II)'A -[JKiL. ..
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Generalized BCFW deformations in D=11

@ As in 4D construction the deformation implies the shifts

Ky=kn-2a",  Ky=ky+z", zeC
G:0°=0,  QakGy=0,  qak( =0,

@ In D=11 and D=10 that results from

Voo =y = # o #
Vag(n) = Vaqn) T Z Vap(1) Mg P(1)/P(n) ,
Vo =y - # #
Vaq(t) = Vaq) — 4 Magp Vap(n) /’(n)/P(1)

where Moo = —2G7 (V) TaVn)) \/ i3y iy / (KiyK() T8 nilpotent

U

| MMy =0

MgMp =0 |

@ This nilpotent matrix enters also the deformation of the fermionic

- _o- - s
Optmy) = Opin) + 2 00y Map \/ 03y /(i
—  _ - - #
Oty = gty — ZMap Oy \/ P/ P3y -
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BCFW relations for 11D superamplitudes

11D BCFW

BCFW-type recurrent relations for tree 11D superamplitudes [PRL 2017] are
AL o ki 0y ke, Oy i Kn O) =
(=)= (+1)
=3 e O (Azﬁ@ ol Oy e Oy 0y Pi(2),07)
1 = 141) S
X W D +Z/)AZI/7Jp+QI+1 ( P/(Z/) 0 ; Kiq, 9</+1), oo Koo, Q(n71); Kn, G(n))) L
I =
o where Pf = — > ki, Pi(z)=- Z ka( ) = P — zq® and
m=1
._ PiPia ; a ;
z:= ;L2 |with g° obeying ?=0,9-k=0,9-ky=0
)
o Actually, g% = —\/p¥ pik qmr “MagpVyy /32 with MM =
@ Actually, the bosonic arguments of the on-shell amplitudes are pff) and
Vgt TOM Ka(hT25 = 207V, Visarsy @D Vo P2V, = Kaiydap/ 0 -
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BCFW relations for 11D superamplitudes

11D BCFW

AD o (k1,9*;kg,a*;,..;kn,e(;)):
/+1
—264 iz D (AL oy ot Oy b, Oy - e 6 Pi(2),67)
1 <

4 (n—1+1) =
Xi(PI)Z DQ(Z/)AZ, Jp Q1. Qn( P/(Z/) 0~ k/+1a ([+1 kn 15 (n 1) km (n) ))

@ Actually, the bosonic arguments of the on-shell amplitudes are pff and
Vog(i from kayT2 5 = 207 v,

wath Vay @D Vo T2V = Kaydap/pfy)-
@ and +P%(z) should be also understood as vaqpl(z/) and ipﬁl(z,)
’sl\a(zl)raaﬂ = 2975, Vaqp,Vsap, ; ﬁ/a(zl)‘sap = Pﬁ, Vgp, Fev,,
@ Finally, D+

|s the covariant derivative with respect to 0,
T #
Dq(Z/) o 09; + 2pP/9 :
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@ Analytic superamplitudes
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So(D—2)

Internal =~ D475 T harmonics

Little group SO(D-2)— SO(D-4) tiny group
@ Actually there exists a possibility to construct an alternative, analytic
superfield formalism [hep-th/1705.nnnn].

@ The price to pay is breaking (spontaneous) of the little group symmetry
SO(D — 2); to the 'tiny group’ SO(D — 4) (€ SU(N)).

@ The analytic superamplitudes have a superfield structure very similar to
its D=4 cousin, but with 'component’ amplitudes depending on another
set of bosonic variables. These are:

@ D=10 or D=11 spinor helicity variables: densities p# and v,

- Spin(1,D — 1)
{Vagit = ([80(171)®Spin(D—2)] (XKD_z) 7

and internal frame or internal harmonic variables

— Spin(D — 2)
{Wai, Wagi} = <3p,'n(Df 4)® U(1)>,-

[Harmonic variables, SU(2)/U(1), SU(3)/(U(1)XU(1)),..
[Galperin, Ivanov, Kalitsin, Oglevetsky, Sokatchev= GIKOS CQG 84,84],
[Galperin, Ivanov, Sokatchev "Harmonic superspace”, CUP 2001],
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So(D—2)
Q

Internal harmonics

% harmonic variables

@ This internal frame or internal harmonic variables

I Spin(D — 2)
(Wi, Waqi} = (Spfn(D -4)® U(1)); ’

obey
— A A A B P
WggWq~ = 08", wg'wg =0, WgaWgs =0 .
besides
/ — A 7 I 7 A=
Up := 1gpU1 = 2Waaw, Wc;b = YgpUr = 2Wq Wpa -

and %p 7wqu, = /anABW + iWga5 B Wy (in D=11 g = q)
@ (inD=11 g = q, Spin(7) c SU(8); for D=10 Spin(D — 4) = SU(4)).
@ Here U, U, and Uy’ form the vector internal frame

Ul = (U5 U+ D)), 5 (U- D)) € SOD-2),
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Analytic superamplitudes

Analytic superamplitude of 10D SYM

@ We start with the basic A(" ,, obeying

+(/) (n)
D" AL ., = 26] Vq,q/Ah R
@ First, we contract SO(8); 8v indices with Uj; (’yqu,, = 2Wgai W; )

({P ; aq() ; Wi, Wi eql}) U/11 0o U/nn A/1~~-/n({p#7 Vc;qi; 9;}) s

@ we obtain the object which obeys

DiD An({pfy), Vg Wi Wi 053) =0 Wj=1,..,n,

_ . _ i ) _ _ s e

DZU) = WqA/qu) = W + 2/)/#77A/' ) Naj = Ogi Wanj = (7] A)
j

@ Our analytic 10D SYM superamplitude is related to this by

—_-B
—2% p¥ i
Z,Pl ng; 7; -

_ _ —A-
An({--., wi; nA;qu + ;" Woni })

-An({p#, Va;i; Wi, w;; 77Ai}) =€
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Analytic superamplitudes

Analytic superamplitude of 11D SUGRA

@ The analytic superamplitudes of 11D SUGRA are constructed as

An({p¥, v, 0;7,-; Wi, Wi; nai}) = Up1Ug ... UpnUgn X

_221 T’B] i =0 _ _ A A
XE EZ)J1)4.4(IJ-J/-)...(I,,J,1)({p#’Vaqi; NaiWgi + ;" Waai}).-

from the basic 11D superamplitude A ;, obeying

+ _# (n)
D A/m () (Indn) = Pj qu(/flA(/1J1)---(’j—1Jj—1)|Jj)P (i+19j41)--(Indn)

@ Notice that, despite the similarity of the superfield structure of analytic
superamplitudes with ones of D=4 /' = 4 SYM and N/ = 8 SUGRA

@ the generalization of 4D results to 10D and 11D is not straightforward.
@ This issue is under investigation now.

@ In particular, we have found a Lorentz covariant counterpart of the light
cone gauge, fixed on spinor frame variables, which promises to be very
useful tool for development of both constrained and analytic
superamplitude formalisms.
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Discussion and conclusion

Discussion and conclusion

@ | hope this study have convinced you that the D=10, 11 Lorentz
harmonic approach and(or) spinor moving frame formalism
[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91, Bandos, Zheltukhin
91-95, Galperin, Howe, Stelle 93, Bandos, Nurmagambetov 96, Bandos, Sorokin,
..., Uvarov,...], which, in contrast to Newmen-Penrose diad and Penrose
twistor formalism, work(s) with highly constrained set of spinors,
@ is useful, besides the in the superembedding approach
e [Bandos, Pasti, Sorokin, Tonin, Volkov 95, Bandos, Sorokin, Volkov 95,
Howe, Sezgin 96, Howe, Sezgin, West 97, Bandos, Sorokin, Tonin 97, ... |
also in the on-shell amplitude calculations.
@ Of course, we are at the first stages of developing such an application.
@ Namely we have constructed/presented:
e the 10D and 11D spinor helicity formalism,
o on-shell superfield description of 11D SUGRA and 10D SYM amplitudes =
constrained superamplitude formalism
o the BCFW-type relation for 11D superamplitudes (and a hopefully
more convenient version of BCFW for 10D SYM superamplitudes),

@ and almost unconstrained analytic superamplitudes formalism.
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Outlook

The natural directions for further development are:

@ Generalization of constrained and analytic superamplitude approaches
to loop (super)amplitudes.

@ To develop the spinor moving frame and on-shell superfield approaches
to the CHY scattering equations
[Cachazo, He, Yuan, PRL 2014= arXiv:1307.2199]
and 'ambitwistor string’
[Mason, Skinner JHEP 2013, ..., Geyer, Lipstein, Mason PRL14, ...,
Adamo, ..., Lipstein, Schomerus, ...]
(our approach implies rather Green —Schwarz type ambitwistor
superstring~twistor superstring [lg Bandos, JHEP 14, arXiv:1404.1299]).
@ Possible generalization to 10D superstring amplitudes
@ (including field theory amplitudes beyond 10D SYM/SUGRA).

@ ? 11D superamplitudes beyond 11D SUGRA? (?M-theory amplitudes?)

4
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THANK YOU FOR YOUR ATTENTION!
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@ BCFW for amplitudes from super-BCFW for superamplitudes



BCFW from super-BCFW

The 10D SYM superamplitude with four fermionic outcomes can be
reproduced from

“4¢1G2‘73¢4(k17‘9(_1);k279_2 ;k37073, ;k47971 )=

1 —~ _
= Ty (D (Ana st 0y be Oy Pa(212).07) »
1 <, . N
X Py D atei e paoan (—Pra(212), 07 ks, 66y s, O1)) @_70_(263
-

After applying the covariant derivatives, this expression can be written in the

form
-Aq1q2q3q4(k17 )k270 i k3, 05yi ke, 0

(2) a2 O3y Kas 0g)) =

= 24, qapki. 0 (1)) K22 05y P7(212), Vg (212),0)
1 —~ _ P
XmAﬁz pa3q4(—/)#(212)7 Vg (212),0; k3»9(3)§ k479(4))
+Az, oo /(/?179(71); ke, 05y p#(212), Vg (212),0)
1

X WAZQ 1465 (—P*(212), Vg (212), 0; K3, 05y Ka 0 4)) + (2 <— 3) .



BCFW from super-BCFW

From this we can obtain the BCFW relation for the 4-fermionic amplitude of
10D SYM

A ipasan (Ki; Ko ki ka) =
Azip a1 /(la i Kay s p7(242), Vg (242))
1

XWAZQ /c‘;e,@m(—/;;(212)7 Vg (212); ks, ; /?4) +(2+—3).

Its structure is simpler than that of superamplitude
because the amplitudes of odd number of fermions vanishes, in particular

Az tnip p(Kii b, p#(212), Vg (212)) = 0

(which is not the case for superamplitudes).
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e Convenient gauge with respect to [ [ H; symmetry



Convenient gauge

It is convenient to introduce an auxmary spinor frame (V,g, Vy) and
associated vector frame (uz, uZ, u). Then

@ any of the spinor and vector frames (v__ and associated vector

q(iy’ atJ( )
frame (ug;) Zj,), ua(,)) associated to one of the scattered particles are

related to these by the Spin(1,D-1) Lorentz transformations

@ but only (D — 2) of the parameters of this Lorentz transformation, K~/
(=~ SP~?), are not associated to gauge symmetry which defines spinor
frame(s)

e thus we can fix the gauge (K*' =0, OF = §¥, e~ = 1) in which any
spinor frame can be expressed through the auxiliary frame by

IJ
)

— =l + + Tt
Vagiy = Vag + §/<I YapVap > Vag(iy = Vag -
@ The frame vectors are related to the vectors of auxiliary frame by

Uziy = Uz + KGy'ub (RT) uf

1,
I I )
Uz = Ua + 5 KG) uf | ui, = uf
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@ 3-point tree amplitudes with two fermionic particles and 4-fermion tree
amplitude in 10D SYM



3fp- and 44 amplitudes

Explicit expression for the tree 4—fermion amplitudes of 10D SYM from BCFW relation
As an example we can discuss the expression for 3-point 10D SYM
amplitude with two fermionic outcomes:

Ag o /(Pﬁ), 07(1)? Pé)v Vaeyi Pzﬁz)(Zm)a Vg (212)) =

o —a = J Joo
o</l e |[q1<1) apa(@) Voot (U2) U)) — fiz(Z)Vap1(1)7P1i71(U(1)u(3))]

In the above gauge this simplifies to

HEoo— L # L~ # - _ ./
Agy 10001y Vo) P2y Vae): Pl12)(Z12): Vg (212)) = |P(1)/’ ‘ (12)%145 -

Now we can easily calculate the tree 4—fermion amplitudes of 10D SYM from
BCFW relation

‘Af‘h 572573574(k1 i Ko ka; k4) =

# K(12)K54) K K(24

_ #o#
= \P(1)P(2)P(3)P(4)| Oén o Q3q4 72 O304 ?

We can write also the analogous 11D superamplitudes but these are more
complicated.
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