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Recent years we are witnesses of a great progress in amplitude
calculations (including multiloop amplitudes; see reviews
[Bern, Carrasco, Dixon, Johansson and Roiban, Fortsch.Phys. 2011],
[Benincasa, Int.J.Mod.Phys. A 2014], and refs. therein)
an important part of which is related to the use of twistor-like and
(super)twistor methods, and with BCFW approach first developed for
tree gluon amplitudes in [R. Britto, F. Cachazo, B. Feng and E. Witten,
PRL2005] (see also [Britto, Cachazo, Feng, NPB05])
and generalized for tree and loop superamplitudes of N = 4 SYM and
N = 8 SG in

Arkani-Hamed, Cachazo, Kaplan, JHEP 2010 [arXiv:0808.1446[hep-th]],
Brandhuber, Heslop, Travaglini, PRD 2008 [arXiv:0807.4097 [hep-th]].

The list of important papers in this direction certainly includes
Bianchi, Elvang, D. Freedman, JHEP 2008 [arXiv:0805.0757 [hep-th]],
Drummond, Henn, Korchemsky, E. Sokatchev, NPB 2010 [arXiv:0807.1095],
Drummond, Henn, Plefka, JHEP 2010 [arXiv:0902.2987 [hep-th]],

and many others... (Sorry for missed references!)
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Main elements used in the D=4 superamplitude calculations are,
schematically,

spinor helicity variables (essentially four dimensional!)

on-shell superfields

superamplitudes=superfield description of the amplitudes=multiparticle
generalization of the on-shell superfields
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Higher D generalizations of BCFW

[Cheung and O’Connell JHEP 2009] generalization to D=6.

For D=10: [Caron-Huot+ O’Connell JHEP 10]: i) D=10 spinor helicity
formalism and ii) ”Clifford superfield” description of tree D=10 SYM
superamplitudes (quite non minimal and it is not easy to use it).

The spinor helicity formalism from [Caron-Huot and O’Connell JHEP
2010] was mainly used in the context of type IIB supergravity:
[Boels, O’Connell, JHEP 12, Boels PRL 12, Wang, Yin, PRD 15].

In this talk, based on Phys.Rev.Lett.118(2017) [arXiv:1605.00036],
arXiv:1705.nnnnn and [paper in prep.], we describe the generalization of
the spinor helicity formalism, on-shell superfield description and the
BCFW relations for D=11 SUGRA and D=10 SYM superamplitudes.

Actually we have proposed (and are elaborating) two approaches
Constrained superamplitude formalism
and
almost unconstrained analytic superamplitude formalism.
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PRL 2017 [arXiv:1605.00036], [arXiv:1706. in preparation], arXiv:1705.nnnnn

In more details:
The staring point of this work was the observation that 10D spinor
helicity variables of [Caron-Huot+O’Connell 2010] can be identified with

spinor moving frame variables [Bandos, Zheltukhin 91-95], [Bandos,
Nurmagambetov 96], ... or, equivalently, with
D=10 Lorentz harmonics [Galperin, Howe, Stelle 91, Galperin, Delduc,
Sokatchev 91]

This observation was made independently in [Uvarov CQG 2016,
arXiv:1506.01881] and used their to develop 5D spinor helicity formalism.

This allowed us
to find immediately the spinor helicity formalism for 11D amplitudes
to propose a simpler constrained superfield formalism for superamplitudes of
D=10 SYM (constrained superfields versus Clifford superfields).
and to develop the constrained superamplitude formalism for D = 11
SUGRA.
To propose the BCFW relations for 10D and 11D superamplitudes

To find an almost unconstrained analytic superamplitude formalism for
D = 11 SUGRA and 10D SYM [1705.nnnnn]].
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4D Spinor helicity formalism and BCFW

Bosonic spinors and spinor helicity formalism.

In the spinor helicity formalism for D=4 amplitudes

A(1, .., n) := A(p(1), ε(1); ...; p(n), ε(n)) = A(λ(1), λ̄(1); . . . ;λ(n), λ̄(n)) .

the (light-like) momenta pµ(i) and polarizations of the external particles
are described by the bosonic Weyl spinors λA

(i) = (λ̄Ȧ
(i))
∗. In particular,

pµ(i)σ
µ

AȦ
= 2λA(i)λ̄Ȧ(i) ⇔ pµ(i) = λ(i)σµλ̄(i), µ = 0, ..., 3

where σµ
AȦ

are relativistic Pauli matrices, A = 1, 2, Ȧ = 1, 2, and

σµAȦσµBḂ ≡ 2εAB εȦḂ
⇒ pµipµi = 0 .

Introducing < ij >≡< λ(i)λ(j) >= εABλ
A
(i)λ

B
(j), [ij] := [λ̄(i)λ̄(j)] = ε

ȦḂ
λ̄

Ȧ

(i)λ̄
Ḃ

(j)

the simplest MHV amplitude [Parke & Taylor, PRL86] reads

AMHV (1, ..., n) = δ4

(∑
i

λA(i)λ̄Ȧ(i)

)
< ij >4

< 12 > ... < (n − 1)n >< n1 >

where the i-th and j-th particles are assumed to be of negative helicity.
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4D Spinor helicity formalism and BCFW

Helicity

The amplitude should obey the helicity constraints,

ĥ(i)A(1, ..., n) = hiA(1, ..., n) ,

where hi is the helicity of the state, hi = ±1 in the case of gluons, and

2ĥ(i) := −λA
(i)

∂

∂λA
(i)

+ λ̄
Ȧ

(i)
∂

∂λ̄
Ȧ
(i)

.

Thus the n-particle amplitudes are also characterized by n helicities. For
gluons these are ±1 and the amplitude carries n sign indices,

A(1, ..., n) = A−...−...+...+(1, ..., n).

It can be shown that A+...+(1, ..., n) = 0, A−+...+(1, ..., n) = 0,

so that the simplest maximal helicity violation (MHV) amplitude is

AMHV (1, ..., n) = A+...+−i +...+−j +...+
(1, ..., n) =

δ4
(∑

i
λA(i)λ̄Ȧ(i)

)
< ij >4

< 12 > ... < n1 >
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4D Spinor helicity formalism and BCFW

BCFW deformations

The BCFW recursion relations

An =
∑
I,h

Ah
I

1
PI2 A

−h
J , where I

⋃
J = (1, ..., n)

use the on-shell amplitudes depending on the deformed spinors, say

λA
(n) 7→ λ̂A

(n) = λA
(n) + zλA

(1), λ̄Ȧ
(n) 7→

̂̄
λȦ

(n) = λ̄Ȧ
(n),

λA
(1) 7→ λ̂A

(1) = λA
(1) , λ̄Ȧ

(1) 7→
̂̄
λȦ

(1) = λ̄Ȧ
(1) − zλ̄Ȧ

(n),

which implies the deformation of 1st and n-th momenta

pa
(n) 7→ p̂a

(n)(z) = pa
(n) + zqa , pa

(1) 7→ p̂a
(1)(z) = pa

(1) − zq̄a ,

qaqa = 0 , pa
(n)qa = 0 , pa

(1)qa = 0 .

The deformed momenta are generically complex but remain light-like,

p̂a
(n) p̂(n)a = 0 , p̂a

(1) p̂(1)a = 0 .
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4D Spinor helicity formalism and BCFW

BCFW recurrent relations. Explicit form.

The BCFW recurrent relations for tree amplitudes of D=4 gluons read

A(n)(p1, p2, . . . ; pn) =
∑

h

n∑
l

A(l+1)
h (p̂1(zl ); p2; . . . ; pl ; P̂Σl (zl ))×

1
(PΣl )

2 A
(n−l+1)
−h (−P̂Σl (zl ), pl+1; . . . ; p̂n(zl )) ,

where h is the helicity of intermediate state with P̂Σl (zl ),

Pa
Σl

= −
l∑

m=1
pa

m and P̂a
Σl

(z) = −
l∑

m=1
p̂a

m(z)

∑
l

is the sum over l and over distributions of particles among A
{(l+1)

(n−l+1)

±h .

The specific l-dependent value of the complex parameter z,

zl := Pa
Σl

PΣl a/2Pb
Σl

qb

is such that (P̂a
Σl

(zl ))2 = 0 ⇒ r.h.s. contains on-shell amplitudes.
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4D Spinor helicity formalism and BCFW

Superamplitudes and on-shell superfields for N = 4 SYM and N = 8 SUGRA

One can also collect the n-particle amplitudes of the fields of SYM
(SUGRA) in the superfield amplitude (superamplitude)

A(1; ...; n) = A(λ(1), λ̄(1), η(1); ...;λ(n), λ̄(n), η(n)) ,

depending on n fermionic ηq
(i) = (η̄q(i))

∗ in fundamental rep. of SU(4)

(SU(8)), q = 1, ..., 4 (...8).

This is possible because the on-shell states of the maximal SYM
(SUGRA) multiplet can be collected in an on-shell superfield

Φ(λ, λ̄, ηq) = f (−s) + ηqχq + 1
2η

qηpspq + . . .+ 1
N !
ηq

1 . . . η
qN εq1...qN f (+s) ,

chiral superfield on an on-shell superspace of super-helicity s = N
4 ,

ĥΦ(λ, λ̄, ηq) = sΦ(λ, λ̄, ηq) , ĥ := − 1
2λ

A ∂
∂λA + 1

2 λ̄
Ȧ ∂

∂λ̄
Ȧ + 1

2η
q ∂
∂ηq .

The N = 4 (8) superamplitudes obey n superhelicity constraints

ĥ(i)A({λ(j), λ̄(j), η
q
(j)}) = sA({λ(j), λ̄(j), η

q
(j)}) , s =

N
4
.
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4D Spinor helicity formalism and BCFW

The power of superamplitudes for N = 4 SYM

SUSY Ward identities QAqA({λ(i), λ̄(i), η
q
(i)}) = 0, Q̄q

Ȧ
A(...) = 0

immediately imply that

A+...+({λ(i), λ̄(i)}) =

∫ ∏
i

dN ηi A({λ(i), λ̄(i), η
q
(i)}) = 0 and

A+...+−({λ(i), λ̄(i)}) =

∫ n−1∏
i=1

dN ηi dN η̄n A(η1, ..., η(n−1), η̄n) = 0

and also fix the form of tree MHV superamplitude of N = 4 SYM

AMHV ({λ(i), λ̄(i), η
q
(i)}) =∝

δ4(
∑

i λiσ
aλ̄(i))δ

2N (
∑

i λ
A
(i)η

q
(i))

< 12 > ... < n1 >

[Nair, PLB 1988].
The MHV amplitude can be obtained from MHV superamplitude as

A+...+−−({λ(i), λ̄(i)}) =

∫ n−2∏
i=1

dN ηi dN η̄(n−1) dN η̄n A(η1, ..., η̄(n−1), η̄n)
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BCFW for superamplitudes ofN = 4 SYM andN = 8 SUGRA

BCFW relations for superamplitudes

In the BCFW-like recurrent relations for tree superamplitudes of N = 4
SYM and N = 8 supergravity [Brandhuber, Heslop, Travaglini, PRD
2008, Arkani-Hamed, Cachazo, Kaplan, JHEP 2010].

A(n)(k1, η1; . . . ; kn, ηn) =

=
∑

l

∫
dN ηA(l+1)

zl
(k̂1, η̂1; k2, η2; . . . ; kl , ηl ; P̂Σl (zl ), η)

1
(PΣl )

2 ×

×A(n−l+1)
zl

(−P̂Σl (zl ), η; kl+1, η(l+1); . . . ; kn−1, ηn−1; k̂n, η̂n) .

the deformations of the bosonic spinors

λ̂A
(n) = λA

(n) + zλA
(1),

̂̄
λȦ

(1) = λ̄Ȧ
(1) − zλ̄Ȧ

(n),

is supplenented by the deformation of fermionic ηq = (η̄q)∗,

η̂q
(n)(z) = ηq

(n) + zηq
(1) , η̂q

(1)(z) = ηq
(1) .

New issues (w/r to bosonic BCFW): i)
∑
h
7→
∫

dN η, and

ii) η̂q
(n)(z) = ηq

(n) + zηq
(1) which mixes gluon and gluino amplitudes.
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame in D=11

In D=4: pµ(i)σ
µ

AȦ
= 2λA(i)λ̄Ȧ(i) ⇔ pµ(i) = λ(i)σµλ̄(i).

Similarly, the light-like ka of a massless 11D particle can be expressed by

kaΓa
αβ = 2ρ#v −αq v −βq , ρ#v−q Γ̃av−p = kaδqp ,

in terms of ’energy variable’ ρ# and

a set of 16 constrained bosonic 32-component spinors v −αq ,
q, p = 1, ..., 16, α = 1, ..., 32 which can be identified with

D=11 spinor moving frame variables
[Bandos, Zheeltukhin 92, Bandos 2006-2007]
11D Lorentz harmonics [Galperin, Howe, Townsend NPB 93].

Essentially, the constraints on v −αq are given by the above equations

supplemented by v −αq Cαβv −βp = 0 ,

and by the requirement that the rank of 32× 16 matrix v −αq is = 16.
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame variables in D=11

One can show that (roughly speaking) in the theory with local

SO(1, 1)⊗ SO(9) symmetry, v −αq obeying the above constraints

u=
a Γa

αβ = 2ρ#v −αq v −βq , v−q Γ̃av−p = u=
a δqp , v −αq Cαβv −βq = 0

(u=
a ≡ ka/ρ

#) can be considered as homogeneous coordinates on S9,
the celestial sphere of a D=11 observer,

{v −αq} = S9 .

(
S9 =

SO(1, 10)

[SO(1, 1)⊗ SO(9)] ⊂×K9

)

Spinor moving frame and spinor helicity formalism

One can check that, due to the above constraints the momentum ka

(= ρ#u=
a ) is light-like kaka = 0

and that v −αq and v−αq = −iCαβv −βq obey the Dirac equations

kaΓ̃aαβvβq
− = 0 ⇔ kaΓa

αβv−βq = 0 .
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D=11 spinor helicity formalism and spinor moving frame

11D Spinor helicity formalism

The 11D counterpart of the 10D spinor helicity variables of Caron-Huot
and O’Connell are λαq =

√
ρ#v −αq ;

the 11D counterpart of the polarization spinor of the fermionic field is
λαq =

√
ρ#v−αq = −iCαβλβq (= (λαq )∗).

The constraints on v −αq can be written in terms of λα

kaΓa
αβ = 2λαqλβq , λq Γ̃aλp = kaδqp λCλ = 0

Then why we need ρ# and v −αq = λαq/
√
ρ#?

The geometric and group theoretic meaning of v −αq is much more clear.
ρ# and its canonically conjugate coordinate x= will play an important role in
the construction of on-shell superfields and superamplitudes.

In particular the D=11 counterpart of the on-shell superspace is

Σ(10|16) : {(x=, v −αq ; θ−q )} ,

with bosonic sector R⊗ S9 including R = {x=} and S9 = {v −αq}.
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D=11 spinor helicity formalism and spinor moving frame

Brink-Schwarz superparticle and spinor moving frame

But where such seemingly strange spinor frame variables come from?

To understand this it is useful to discuss massless superparticle model.

To start from Brink-Schwarz action which does exist in any dimensions
and to follow the way to the Ferber-Schirafuji-like spinor moving frame
formulation.

The quantization of superparticle in its spinor moving frame formulation
leads us to an appropriate on-shell superfield formalism which can be
then generalized to superamplitudes.

Here we just briefly describe the results of this procedure

starting from a few more details on spinor frame
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Spinor frame ∀D

Vector frame attached to light-like momentum

A particular solution of the mass shell conditions kaka = 0 is given by

ka = ρ (1, 0, ..., 0,−1)

Any other solution can be obtained from this (or from the reflected one)
by performing a τ -dependent O(1,D − 1) Lorentz transformation

u(b)
a (τ) ∈ O(1,D − 1) ⇔ u(b)

a ua(c) = η(b)(c) = diag(+1,−1, ...,−1) ,

so that the general solution of the mass-shell constraint papa = 0 is

ka = u(b)
a p(b) = ρ(u0

a − u(D−1)
a ) =: ρ#(τ)u=

a (τ) ,

By construction, the vector u=
a (τ) = (u0

a − u(D−1)
a ) is light-like.

It is convenient to write the frame matrix u(b)
a (τ) ∈ SO(1,D − 1) in terms

of this u=
a , its complementary light-like u#

a (τ) = (u0
a + u(D−1)

a ) and uI
a,

u(b)
a =

(
1
2

(
u=

a + u#
a

)
, uI

a ,
1
2

(
u#

a − u=
a

))
∈ SO↑(1,D − 1) .
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Spinor frame ∀D

Frame variables= Vector Lorentz harmonics

The defining relation for the moving frame matrix or the matrix of
vector Lorentz harmonics (or light-cone harmonics) [Sokatchev 86]

u(b)
a =

(
1
2

(
u=

a + u#
a

)
, uI

a ,
1
2

(
u#

a − u=
a

))
∈ SO↑(1,D − 1) ,

is equivalent to u(b)
a ua(c) = η(a)(c) (see [E. Sokatchev, 86,87]), i.e.

u=
a ua= = 0 ,

u#
a ua# = 0 , u=

a ua# = 2 ,

uI
aua= = 0 = uI

aua# , uI
auaJ = −δIJ

and δa
b =

1
2

u=
a ub# +

1
2

u#
a ub= − uI

aubI .

Resuming: a frame can be attached to a light-like momentum by setting

ka = ρ#u=
a .
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Spinor frame ∀D

Moving frame variables=SO(1,D − 1)/[SO(1, 1)⊗ SO(D − 2)] ⊂×KD−2

The splitting of u(b)
a is manifestly invariant under SO(1, 1)× SO(D − 2)

so that in a model with this gauge symmetry the vector harmonics=
homogeneous coordinates of the coset SO(1,D−1)

SO(1,1)×SO(D−2)

{u=
a , u

#
a , uI

a} = SO(1,D−1)
SO(1,1)×SO(D−2)

(E.g. moving frame formulation of superstring [Bandos, Zheltukhin 91,92])
In the model involving only u=

a (massless superparticle), the gauge
symmetry increases to [SO(1, 1)× SO(D − 2)] ⊂×KD−2 where KD−2 is

u=
a 7→ u=

a , u#
a 7→ u#

a + 1
4 u=

a (K #I)2 + uI
aK #I ,

uI
a 7→ uI

a(i) + 1
2 u=

a(i)K
#I ,

and the set of harmonic variables parametrize a compact coset

{(u=
a , u

#
a , uI

a)} = SO(1,D−1)
[SO(1,1)×SO(D−2)]⊂×KD−2

= SD−2 or {u=
a } = SD−2

[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91].
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Spinor frame ∀D

Spinor moving frame =
√

moving frame

Spinor moving frame =
√

moving frame is defined by conditions of
Lorentz invariance of D-dimensional Γa and also Cαβ if such exists,
i.e. is defined by a matrix V ∈ Spin(1,D − 1) which obeys

V ΓbV T = u(a)
b Γ(a) , V T Γ̃(a)V = Γ̃bu(a)

b ,

VCV T = C , for D in which ∃C .

The SO(1, 1)× SO(D − 2) invariant splitting of the spinor moving frame
matrix, corresponding to u(a)

b = (u=
b , u

#
b , u

I
b), is

V (β)
α =

(
v +
αq̇ , v −αq

)
∈ Spin(1,D − 1) ,

where q and q̇ are indices of the spinor representations of SO(D − 2),
which can be different, like s-spinor and c-spinor in D=10,

D = 10 : α = 1, ..., 16 , q̇ = 1, ..., 8 , q = 1, ..., 8 ,

or the same, as in D=11,

D = 11 : α = 1, ..., 32 , q = q̇ = 1, ..., 16 , v +
αq̇ ≡ v +

αq .
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Spinor frame ∀D

Inverse spinor moving frame matrix

The rectangular blocks of the spinor moving frame matrix, v −αq and v +
αq̇

are called spinor moving frame variables or spinor harmonics
(spinorial Lorentz harmonics).
When the charge conjugation matrix exists, the elements of the inverse
spinor moving frame matrix

V α
(β) =

(
v+α

q
v−α

q̇

)
∈ Spin(1,D − 1)

can be costructed from the harmonics v +
αq̇ and v −αq . For instance,

D = 11 : vα−q = iCαβv−βq , vα+
q = −iCαβv+β

q .

When the charge conjugation matrix does not exist, like it is in D = 10
(MW representation), these are defined by the conditions

v+α
q v −αp = δqp , v+α

q v +
αṗ = 0 ,

v−αq̇ v −αq = 0 , v−αq̇ v +
αp = δq̇ṗ ,

or equivalently, V (β)
α V(β)

γ := v−q̇
α v+γ

q̇ + v−αq v−γq = δγα.
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Spinor frame ∀D

With the suitable representation for Γ–matrices, the constraints
V ΓbV T = u(a)

b Γ(a) V T Γ̃(a)V = Γ̃bu(a)
b can be split into

u=
a Γa

αβ = 2vαq
−vβq

− , v−q Γ̃av−p = u=
a δqp,

, u#
a Γa

αβ = 2vαq̇
+vβq̇

+ , v+
q̇ Γ̃av+

ṗ = u#
a δq̇ṗ ,

uI
aΓa
αβ = 2v(α|q

−γ I
qq̇v|β)q̇

+ , v−q Γ̃av+
ṗ = uI

aγ
I
qṗ .

For D=11 q, p ≡ q̇, ṗ = 1, ..., 16 are spinor indices of SO(9) and
γ I

qp = γ I
pq is the SO(9) gamma matrix;

for D=10 γ I
pq̇ =: γ̃ I

q̇p are Klebsh-Gordan coefficients of SO(8),
q, p = 1, ..., 8 are s-spinor (8s) indices, q̇, ṗ = 1, ..., 8 are c-spinor (8c)
indices and I=1,.., 8 is SO(8) vector index (8v-index).
In our perspective the especially important among above relations are

u=
a Γa

αβ = 2vαq
−vβq

− , v−q Γ̃av−p = u=
a δqp

which allow to state that v −αq is a square root of u=
a

in the same sense as in D=4 one states λA ”=”
√

pa (pµσµAȦ
= 2λAλ̄Ȧ).
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Spinor frame ∀D

D=10 vs D=11 spinor frame formalism

In D=10 the above should be completed by eqs for inverse harmonics,

u=
a Γ̃aαβ = 2v−αq̇ v−βq̇ , v−q̇ Γav−ṗ = u=

a δq̇ṗ ,

Γ̃aαβu#
a = 2v+α

q v+
q
β , v+

q Γav+
p = u#

a δqp ,

v−q̇ Γav+
p = −uI

aγ
I
pq̇ , 2v−(α

q̇ γ I
qq̇v+

q
β) = −Γ̃aαβuI

a .

while for D=11 v−αq̇ ≡ v−αq = −iCαβv −βq and these equations are not
independent.

D=10 vs D=11 spinor helicity formalism

The D=10 spinor helicity variables of Caron-Huot and O’Connell is
λαq =

√
ρ#v −αq carrying 8s index, while the polarization spinor is

λαq̇ =
√
ρ#v−αq̇ which carries 8c spinor index of SO(8).

This is in contrast to 11D, where the polarization vector actually
coincides with the spinor helicity variable λαq =

√
ρ#v−αq = −iCαβλβq .
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=10 SYM in spinor frame form of spinor helicity formalism

The polarization vector of the vector field can be identified with uI
a so that

the on-shell field strength of the (D=10) gauge field

D = 10 : Fab = k[aub]
I w I , a = 0, 1, ..., 9 , I = 1, ..., 8

is characterized by an SO(8) vector w I .

The linearized on-shell spinor field

D = 10 : χα = v−αq̇ ψq̇ , q̇ = 1, ..., 8 ,

is characterized by a fermionic SO(8) c-spinor ψq̇ .

The on-shell d.o.f.’s of SYM↔ w I = w I(ρ#, v −αq ), ψq̇ = ψq̇(ρ#, v −αq ) or,
making Fourier transform w/r to ρ#, w I(x=, v−q ) and ψq(x=, v−q ).

Supersymmetry acts on these 9d fields by

δεψq̇ = ε−qγ I
qq̇ w I , δεw I = 2iε−qγ I

qq̇∂=ψq̇ ,

where ε−q = εαv −αq .
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=11 SUGRA in spinor frame/spinor helicity formalism

The linearized on-shell field strength of 3-form gauge field

D = 11 : Fabcd = k[aub
Iuc

Jud ]
K ΦIJK , a = 0, 1, ..., 10, I = 1, ..., 9 ,

is expressed in terms of antisymmetric SO(9) tensor ΦIJK (= AIJK ).

Its superpartners γ–traceless ΨIq and traceless hIJ , are used to make a
decomposition of linearized on-shell 11D graviton and gravitino fields,

D = 11 : ψαab = k[auI
b]v
−α
q ΨIq , γ I

qpΨIp = 0 ,

hab = uI
(auJ

b)hIJ , hII = 0 .

These fields will appear as independent components of a constrained
on-shell superfield.
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield description of D=10 SYM

The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield Ψq̇ obeying

D+
q Ψq̇ = γ I

qq̇ V I , q = 1, ..., 8 , q̇ = 1, .., 8 , I = 1, .., 8 .

The consistency of this eq. requires

D+
q V I = 2iγ I

qq̇∂=Ψq̇ .

⇒ there are no other independent components in the constrained
on-shell superfield Ψq̇(x=, θ−q , vαq

−), but ψq̇ = ψq̇ |0 and w I = V I |0.

Indeed,

Ψq̇(x=, v−q ; θ−q ) = ψq̇(x=, v−q ) + θ−q γ
I
qq̇ w I(x=) +

+
4∑

k=1

(
− i

4

)k (2k−1)!!
(2k)!! (2k)!

(θ−γIk−1Ik θ−) . . . (θ−γI1I2θ−) (γI1I2 . . . γIk−1Ik )q̇ṗ(∂=)kψṗ +

+
3∑

k=1

(
− i

4

)k (2k)!!
(2k+1)!! (2k+1)!

(θ−γ̃I1I2θ−) . . . (θ−γ̃Ik−1Ik θ−)(γ̃I1I2 . . . γ̃Ik−1Ik γ̃Iθ−)q̇(∂=)k w I .
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield description of D=10 SYM

The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield Ψq̇ obeying

D+
q Ψq̇ = γ I

qq̇ V I , q = 1, ..., 8 , q̇ = 1, .., 8 , I = 1, .., 8 .

The consistency of this eq. requires

D+
q V I = 2iγ I

qq̇∂=Ψq̇ .

⇒ there are no other independent components in the constrained
on-shell superfield Ψq̇(x=, θ−q , vαq

−), but ψq̇ = ψq̇ |0 and w I = V I |0.

Indeed,

Ψq̇(x=, v−q ; θ−q ) = ψq̇(x=, v−q ) + θ−q γ
I
qq̇ w I(x=) +

+
4∑

k=1

(
− i

4

)k (2k−1)!!
(2k)!! (2k)!

(θ−γIk−1Ik θ−) . . . (θ−γI1I2θ−) (γI1I2 . . . γIk−1Ik )q̇ṗ(∂=)kψṗ +

+
3∑

k=1

(
− i

4

)k (2k)!!
(2k+1)!! (2k+1)!

(θ−γ̃I1I2θ−) . . . (θ−γ̃Ik−1Ik θ−)(γ̃I1I2 . . . γ̃Ik−1Ik γ̃Iθ−)q̇(∂=)k w I .
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfields of 11D SUGRA

In [A. Galperin, P. Howe, P. Townsend NPB1993] the linearized 11D
supergravity was described by a bosonic superfield
ΦIJK = Φ[IJK ](x=, θ−q , vαq

−) which obeys

D+
q ΦIJK = 3iγ[IJ

qp Ψ
K ]
p , γ I

qpΨI
p = 0 ,

{
I, J,K = 1, ..., 9
q, p = 1, ..., 16

where γ I
qp = γ I

pq are d=9 Dirac matrices, γ IγJ + γJγ I = δIJI16×16, and

D+
q = ∂+

q + 2iθ−q ∂= ≡
∂

∂θ−q
+ 2iθ−q

∂

∂x=

obeying the d=1, N = 16 supersymmetry algebra

{D+
q ,D

+
p } = 4iδqp∂=
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield equations of linearized D=11 SUGRA

The consistency of D+
q ΦIJK = 3iγ[IJ

qp Ψ
K ]
p requires, besides γ I

qpΨI
p = 0, that

D+
q ΨI

p =
1

18

(
γ IJKL

qp + 6δI[Jγ
KL]
qp

)
∂=ΦJKL + 2∂=HIJγ

J
qp ,

with symmetric traceless SO(9) tensor superfield HIJ = H((IJ)), obeying

D+
q HIJ = iγ(I

qpΨ
J)
p , HIJ = HJI , HII = 0 .

These superfield equations (actually any of these three) can be
considered as a counterpart of helicity constraint ĥΦ = hΦ imposed on
the D=4 on-shell superfield.
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On-shell superfield description of 10D SYM and 11D SUGRA

On-shell superfield equations of linearized D=11 SUGRA

Back to D=11 supergravity, we find convenient to collect all the on-shell
superfields in one object

ΨQ(x=, v −αq ; θ−q ) =
{

ΨIq ,Φ[IJK ] , H((IJ))

}
,

with multiindex Q taking 128(=144-16) ’fermionic’ and 128=84+44
’bosonic values’,

Q = {Iq , [IJK ] , ((IJ)) }
(gamma-tracelessness and tracelessness are implied!),
and to write all the equations for them,

D+
q ΨI

p =
1
3

(
γ IJKL

qp + 6δI[Jγ
KL]
qp

)
∂=ΦJKL + 2∂=HIJγ

J
qp ,

D+
q ΦIJK = 3iγ[IJ

qp Ψ
K ]
p , D+

q HIJ = iγ(I
qpΨ

J)
p ,

in the unique form

D+
q ΨQ = ∆Q qPΨP .
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On-shell superfield description of 10D SYM and 11D SUGRA

Fourier transform of the linearized 11D SUGRA equations

After making Fourier transform

ΨQ(ρ#, v −αq ; θ−q ) =
1

2π

∫
dx= exp(iρ#x=) ΨQ(x=, v −αq ; θ−q )

the superfields obey the same D+
q ΨQ = ∆Q qPΨP but with ∂= 7→ −iρ#,

D+
q = ∂+

q + 2ρ#θ−q .

As all ∆Q qP are now algebraic, passing to Fourier image makes natural
to choose the fermionic superfield and its equation as fundamental

D+
q ΨI

p = − iρ#

3

(
γ IJKL + 6δI[JγKL]

)
qpΦJKL − 2iρ#HIJγ

J
qp .

We can define our 11D superamplitudes by generalization of this
equation,
but more convenient way is to start from one of the bosonic
superamplitudes.
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10D and 11D superamplitudes

10D superamplitudes

The on-shell n-particle superamplitudes are functions on a direct product
of n copies of the on-shell superspace.

The basic superamplitude of 10D SYM

A(n)
I1...In

(k1, θ
−
1 ; ...; kn, θ

−
n ) ≡ A(n)

I1...In
(ρ#

1 ; v−q1; θ−q1; ...; ρ#
n ; v−qn; θ−qn) ,

carry n bosonic, 8v indices of SO(8) and obeys

D+
qjA

(n)
I1...Ij ...In

= 2ρ#
j γ

Ij
qq̇A

(n)

I1...Ij−1q̇Ij+1...In
, D+

qj =
∂

∂θ−qj

+ 2ρ#
j θ
−
qj .

Selfconsistency of this equation requires equations for A(n)

I1...Ij−1q̇Ij+1...In
and for amplitudes with higher number of fermions.

It is convenient to introduce a notation with multi-indices Qj = {q̇j , Ij} and
resume all these equations in one

D+
qjAQ1...Qj ...Qj = (−)Σj ∆Qj qPjAQ1...Pj ...Qj .

∆Qj qPj can be read off the equations for on-shell superfields,
∆Iqq̇ = 2ρ#

j γ
Ij

qq̇ etc.
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10D and 11D superamplitudes

11D superamplitudes

The on-shell n-particle scattering amplitudes of 11D SUGRA

A(n)
Q1...Qn

(k1, θ
−
1 ; ...; kn, θ

−
n ) ≡ A(n)

Q1...Qn
(ρ#

1 ; v−q1; θ−q1; ...; ρ#
n ; v−qn; θ−qn) , ,

carry n multi-indices Ql = {Ilql , [IlJlKl ] , ((IlJl )) } and obey

γ
Il
pl ql
A...I(l)q(l)... = 0,

D+
q(l)A...Q(l)... = (−)Σl ∆Ql qP(l)A...P(l)...,

∆Qj qPj can be read off eqs. for on-shell superfields,

and Σl = # of fermionic, Ijqj , indices among Q1, . . .Q(l−1), i.e.

Σl =
l−1∑
j=1

(1−(−)
ε(Qj )

)
2 ,

{
ε([Ij Jj Kj ])=0=ε( ((Ij Jj )) ) ,

ε(Ij qj )=1 .

In particular, when Ql = Ilpl , this equation reads

(−)Σl D+(l)
ql
A(n)

Q1... Il pl ...Qn
= −iρ#

(l)γJl qpA(n)
Q1...((Il Jl ))...Qn

−

− i
18ρ

#
(l)

(
γ

Il Jl Kl Ll
qp + 6δIl [Jlγ

Kl Ll ]
qp

)
A(n)

Q1...[Jl Kl Ll ]...Qn
.
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Generalized BCFW deformations in D=11

As in 4D construction the deformation implies the shifts

k̂a
(1) = ka

(1) − zqa , k̂a
(n) = ka

(n) + zqa , z ∈ C,
qaqa = 0 , qaka

(1) = 0 , qaka
(n) = 0 ,

In D=11 and D=10 that results from

v̂ −αq(n) = v −αq(n) + z v −αp(1) Mpq

√
ρ#

(1)/ρ
#
(n) ,

v̂ −αq(1) = v −αq(1) − z Mqp v −αp(n)

√
ρ#

(n)/ρ
#
(1)

where Mqp = −2 qa (v −q(1) Γ̃av −p(n))
√
ρ#

(1)ρ
#
(n)/(k(1)k(n)) is nilpotent

MrpMrq = 0 , MqrMpr = 0 .

This nilpotent matrix enters also the deformation of the fermionic

θ̂−p(n) = θ−p(n) + z θ−q(1) Mqp

√
ρ#

(1)/ρ
#
(n) ,

θ̂−q(1) = θ−q(1) − z Mqp θ
−
p(n)

√
ρ#

(n)/ρ
#
(1) .
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BCFW relations for 11D superamplitudes

11D BCFW

BCFW-type recurrent relations for tree 11D superamplitudes [PRL 2017] are

A(n)
Q1...Qn

(k1, θ
−
(1); k2, θ

−
(2); . . . ; kn, θ

−
(n)) =

=
n∑

l=2

(−)Σ(l+1)

64(ρ̂#(zl ))2 D+
q(zl )

(
A(l+1)

zl Q1...Ql Jp(k̂1, θ̂
−
(1); k2, θ

−
(2); . . . ; kl , θ

−
(l); P̂l (zl ), θ

−) ×

× 1
(Pl )2

←→
D +

q(zl )
A(n−l+1)

zl Jp Ql+1...Qn
(−P̂l (zl ), θ

−; kl+1, θ
−
(l+1); . . . ; kn−1, θ

−
(n−1); k̂n, θ̂

−
(n))

)
θ−=0

.

where Pa
l = −

l∑
m=1

ka
m , P̂a

l (z) = −
l<n∑
m=1

k̂a
m(z) = Pa

l − zqa and

zl :=
Pa

l Pl a
2Pb

l qb
with qa obeying q2 = 0, q · k1 = 0, q · kn = 0

Actually, qa = −
√
ρ#

1 ρ
#
n v−q(1)Γ̃

aMqpv−p(n)/32 with MMT = 0.

Actually, the bosonic arguments of the on-shell amplitudes are ρ#
(i) and

v −αq(i) from ka(i)Γ
a
αβ = 2ρ#

(i)v
−
αq(i)v

−
βq(i) and v −q(i)Γ̃

av −p(i) = ka(i)δqp/ρ
#
(i).
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BCFW relations for 11D superamplitudes

11D BCFW

A(n)
Q1...Qn

(k1, θ
−
(1); k2, θ

−
(2); . . . ; kn, θ

−
(n)) =

=
n∑

l=2

(−)Σ(l+1)

64(ρ̂#(zl ))2 D+
q(zl )

(
A(l+1)

zl Q1...Ql Jp(k̂1, θ̂
−
(1); k2, θ

−
(2); . . . ; kl , θ

−
(l); P̂l (zl ), θ

−) ×

× 1
(Pl )2

←→
D +

q(zl )
A(n−l+1)

zl Jp Ql+1...Qn
(−P̂l (zl ), θ

−; kl+1, θ
−
(l+1); . . . ; kn−1, θ

−
(n−1); k̂n, θ̂

−
(n))

)
θ−=0

.

Actually, the bosonic arguments of the on-shell amplitudes are ρ#
(i) and

v −αq(i) from ka(i)Γ
a
αβ = 2ρ#

(i)v
−
αq(i)v

−
βq(i) and v −q(i)Γ̃

av −p(i) = ka(i)δqp/ρ
#
(i).

and ±P̂l
a(zl ) should be also understood as v −αqPl

(zl ) and ±ρ#
Pl

(zl )

P̂l
a(zl )Γaαβ = 2ρ#

Pl
vαq
−
Pl

vβq
−
Pl
, P̂l

a(zl )δqp = ρ#
Pl

v−q Pl
Γ̃av−p Pl

.

Finally, D+
q(zl )

is the covariant derivative with respect to θ−q ,
D+

q(zl )
= ∂

∂θ−q
+ 2ρ#

Pl
θ−q .
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Internal SO(D−2)
SO(D−4)⊗U(1)

harmonics

Little group SO(D-2)7→ SO(D-4) tiny group

Actually there exists a possibility to construct an alternative, analytic
superfield formalism [hep-th/1705.nnnn].
The price to pay is breaking (spontaneous) of the little group symmetry
SO(D − 2)i to the ’tiny group’ SO(D − 4) (∈ SU(N )).
The analytic superamplitudes have a superfield structure very similar to
its D=4 cousin, but with ’component’ amplitudes depending on another
set of bosonic variables. These are:
D=10 or D=11 spinor helicity variables: densities ρ#

i and v −αqi

{v−αqi} =

(
Spin(1,D − 1)

[SO(1, 1)⊗ Spin(D − 2)] ⊂×KD−2

)
i
,

and internal frame or internal harmonic variables

{wA
qi , w̄Aqi} =

(
Spin(D − 2)

Spin(D − 4)⊗ U(1)

)
i

[Harmonic variables, SU(2)/U(1), SU(3)/(U(1)XU(1)),... :
[Galperin, Ivanov, Kalitsin, Ogievetsky, Sokatchev=GIKOS CQG 84,84],
[Galperin, Ivanov, Sokatchev, ”Harmonic superspace”, CUP 2001],
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Internal SO(D−2)
SO(D−4)⊗U(1)

harmonics

SO(D−2)
SO(D−4)⊗U(1)

harmonic variables

This internal frame or internal harmonic variables

{wA
qi , w̄Aqi} =

(
Spin(D − 2)

Spin(D − 4)⊗ U(1)

)
i
,

obey

w̄qBwq
A = δB

A , wq
Awq

B = 0 , w̄qAw̄qB = 0 .

besides

U/qṗ := γ I
qṗUI = 2w̄qAwA

ṗ , Ū/J̌
qṗ := γ I

qṗŪI = 2wA
q w̄ṗA .

and U/J̌
qṗ := γ I

qṗU J̌
I = iwA

q σ
J̌
ABwB

ṗ + iw̄qAσ̃
J̌ABw̄ṗB (in D=11 q̇ = q)

(in D=11 q̇ = q, Spin(7) ⊂ SU(8); for D=10 Spin(D − 4) = SU(4)).

Here UI , ŪI and UI
J̌ form the vector internal frame

U(J)
I =

(
UI

J̌ , 1
2

(
UI + ŪI

)
, 1

2i

(
UI − ŪI

))
∈ SO(D − 2) .
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Analytic superamplitudes

Analytic superamplitude of 10D SYM

We start with the basic A(n)
I1...Ij ...In

obeying

D+(j)
qj
A(n)

I1...Ij ...In
= 2ρ#

j γ
Ij
qj q̇j
A(n)

I1...Ij−1q̇j Ij+1...In
:

First, we contract SO(8)i 8v indices with UI i (γ I
qṗUI i = 2w̄qAiwA

ṗi )

Ãn({ρ#
(i), v

−
αq(i); wi , w̄i ; θ

−
qi }) = UI11 . . .UInn AI1...In ({ρ#

i , v
−
αqi ; θ

−
qi }) ,

we obtain the object which obeys

D̄+(j)
A Ãn({ρ#

(i), v
−
αq(i); wi , w̄i ; θ

−
qi }) = 0 ∀j = 1, ..., n ,

D̄+(j)
A = w̄qAjD

+(j)
q =

∂

∂η̄−A
j

+ 2ρ#
j η
−
Aj , η−Aj = θ−qj w̄qAj = (η̄−A

j )∗ .

Our analytic 10D SYM superamplitude is related to this by

An({ρ#
i , v

−
αqi ; wi , w̄i ; ηAi}) = e

−2
∑

j ρ
#
j η
−
Bj η̄
−B
j Ãn({..., w̄i ; η

−
Ai w

A
qi + η̄−A

i w̄qAi })
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Analytic superamplitudes

Analytic superamplitude of 11D SUGRA

The analytic superamplitudes of 11D SUGRA are constructed as

An({ρ#
i , v

−
αqi ; wi , w̄i ; ηAi}) = UI11UJ11 . . .UInnUJnn ×

×e
−2

∑
j ρ

#
j η
−
Bj η̄
−B
j A(n)

(I1J1)...(Ij Jj )...(InJn)({ρ
#
i , v

−
αqi ; η

−
Ai w

A
qi + η̄−A

i w̄qAi}).

from the basic 11D superamplitude A(n)
I1...Ij ...In

obeying

D+
qjA

(n)
(I1J1)...(Ij Jj )...(InJn) = ρ#

j γqp(Ij |A
(n)
(I1J1)...(Ij−1Jj−1) |Jj )p (Ij+1Jj+1)...(InJn)

Notice that, despite the similarity of the superfield structure of analytic
superamplitudes with ones of D=4 N = 4 SYM and N = 8 SUGRA

the generalization of 4D results to 10D and 11D is not straightforward.

This issue is under investigation now.

In particular, we have found a Lorentz covariant counterpart of the light
cone gauge, fixed on spinor frame variables, which promises to be very
useful tool for development of both constrained and analytic
superamplitude formalisms.
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Discussion and conclusion

I hope this study have convinced you that the D=10, 11 Lorentz
harmonic approach and(or) spinor moving frame formalism
[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91, Bandos, Zheltukhin
91-95, Galperin, Howe, Stelle 93, Bandos, Nurmagambetov 96, Bandos, Sorokin,
..., Uvarov,...], which, in contrast to Newmen-Penrose diad and Penrose
twistor formalism, work(s) with highly constrained set of spinors,
is useful, besides the in the superembedding approach

[Bandos, Pasti, Sorokin, Tonin, Volkov 95, Bandos, Sorokin, Volkov 95,
Howe, Sezgin 96, Howe, Sezgin, West 97, Bandos, Sorokin, Tonin 97, ... ]

also in the on-shell amplitude calculations.
Of course, we are at the first stages of developing such an application.
Namely we have constructed/presented:

the 10D and 11D spinor helicity formalism,
on-shell superfield description of 11D SUGRA and 10D SYM amplitudes =
constrained superamplitude formalism
the BCFW-type relation for 11D superamplitudes (and a hopefully
more convenient version of BCFW for 10D SYM superamplitudes),

and almost unconstrained analytic superamplitudes formalism.
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Outlook

The natural directions for further development are:
Generalization of constrained and analytic superamplitude approaches
to loop (super)amplitudes.
To develop the spinor moving frame and on-shell superfield approaches
to the CHY scattering equations
[Cachazo, He, Yuan, PRL 2014= arXiv:1307.2199]
and ’ambitwistor string’
[Mason, Skinner JHEP 2013, ..., Geyer, Lipstein, Mason PRL14, ...,
Adamo, ..., Lipstein, Schomerus, ...]
(our approach implies rather Green –Schwarz type ambitwistor
superstring≈twistor superstring [Ig Bandos, JHEP 14, arXiv:1404.1299]).
Possible generalization to 10D superstring amplitudes
(including field theory amplitudes beyond 10D SYM/SUGRA).
? 11D superamplitudes beyond 11D SUGRA? (?M-theory amplitudes?)
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Outlook

THE END!

THANK YOU FOR YOUR ATTENTION!
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The 10D SYM superamplitude with four fermionic outcomes can be
reproduced from

Aq̇1q̇2q̇3q̇4 (k1, θ
−
(1); k2, θ

−
(2); k3, θ

−
(3); k4, θ

−
(4)) =

=
1

16(ρ̂#(z12))2

(
D+

q(z12)

(
Az12 q̇1q̇2ṗ(k̂1, θ̂

−
(1); k2, θ

−
(2); P̂12(z12),Θ−) ×

× 1
(P12)2

←→
D +

q(z12)Az12 ṗq̇3q̇4 (−P̂12(z12),Θ−; k3, θ
−
(3); k̂4, θ̂

−
(4))

))
Θ−q =0

− (2↔ 3) .

After applying the covariant derivatives, this expression can be written in the
form

Aq̇1q̇2q̇3q̇4
(k1, θ

−
(1)

; k2, θ
−
(2)

; k3, θ
−
(3)

; k4, θ
−
(4)

) =

= 2 Az12 q̇1q̇2ṗ(k̂1, θ̂
−
(1)

; k2, θ
−
(2)

; ρ̂#(z12), v−q (z12), 0)

×
1

(P12)2ρ̂#(z12)
Az12 ṗ q̇3q̇4

(−ρ̂#(z12), v−q (z12), 0; k3, θ
−
(3)

; k̂4, θ̂
−
(4)

)

+Az12 q̇1q̇2 I(k̂1, θ̂
−
(1)

; k2, θ
−
(2)

; ρ̂#(z12), v−q (z12), 0)

×
1

(P12)2
Az12 I q̇3q̇4

(−ρ̂#(z12), v−q (z12), 0; k3, θ
−
(3)

; k̂4, θ̂
−
(4)

) + (2←→ 3) .
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From this we can obtain the BCFW relation for the 4-fermionic amplitude of
10D SYM

Aq̇1q̇2q̇3q̇4 (k1; k2; k3; k4) =

= Az12 q̇1q̇2 I(k̂1; k2, ; ρ̂#(z12), v−q (z12))

× 1
(P12)2Az12 I q̇3q̇4 (−ρ̂#(z12), v−q (z12); k3, ; k̂4) + (2←→ 3) .

Its structure is simpler than that of superamplitude
because the amplitudes of odd number of fermions vanishes, in particular

Az12 q̇1q̇2 ṗ(k̂1; k2, ; ρ̂#(z12), v−q (z12)) ≡ 0

(which is not the case for superamplitudes).
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It is convenient to introduce an auxiliary spinor frame (v −αq , v +
αq) and

associated vector frame (u=
a , u

#
a , uI

a). Then

any of the spinor and vector frames (v −αq(i), v
+
αq(i)) and associated vector

frame (u=
a(i), u

#
a(i), u

I
a(i)) associated to one of the scattered particles are

related to these by the Spin(1,D-1) Lorentz transformations

but only (D − 2) of the parameters of this Lorentz transformation, K =I
i

(≈ SD−2)), are not associated to gauge symmetry which defines spinor
frame(s)

thus we can fix the gauge (K #I
i = 0 , OIJ

i = δIJ , e−βi = 1) in which any
spinor frame can be expressed through the auxiliary frame by

v −αq(i) = v −αq +
1
2

K =I
i γ I

qpv +
αp , v +

αq(i) = v +
αq .

The frame vectors are related to the vectors of auxiliary frame by

u=
a(i) = u=

a + K =I
(i) uI

a +
1
4

(~K =
(i))

2u#
a ,

uI
a(i) = uI

a +
1
2

K =I
(i) u#

a , u#
a(i) = u#

a .
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Explicit expression for the tree 4–fermion amplitudes of 10D SYM from BCFW relation

As an example we can discuss the expression for 3-point 10D SYM
amplitude with two fermionic outcomes:

Aq̇1 q̇2 I(ρ
#
(1), v̂

−
q(1); ρ

#
(2), v

−
q(2); ρ

#
(12)(z12), v−q (z12)) =

∝
√
|ρ#

(1)ρ
#
(2)|
[
v̂−αq̇1(1)

v −αp2(2)γ
J
p2q̇2

(uJ
(2)u

I
(3)) − v−αq̇2(2)v̂

−
αp1(1)γ

J
p1q̇1

(uJ
(1)u

I
(3))
]

In the above gauge this simplifies to

Aq̇1 q̇2 I(ρ
#
(1), v̂

−
q(1); ρ

#
(2), v

−
q(2); ρ

#
(12)(z12), v−q (z12)) =

√
|ρ#

(1)ρ
#
(2)| K̂ =I

(12)δq̇1q̇2 .

Now we can easily calculate the tree 4–fermion amplitudes of 10D SYM from
BCFW relation

Aq̇1q̇2q̇3q̇4 (k1; k2; k3; k4) =

= ∝
√
|ρ#

(1)ρ
#
(2)ρ

#
(3)ρ

#
(4)|

δq̇1q̇2δq̇3q̇4

K̂ =I
(12)K̂

=I
(34)

(
−→
K =I

(12))
2
− δq̇1q̇3δq̇2q̇4

K̂ =I
(13)K̂

=I
(24)

(
−→
K =I

(13))
2

 .

We can write also the analogous 11D superamplitudes but these are more
complicated.
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