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1 Preliminaries and main results

1.1 Preliminaries

This report continues the research of the author’s papers [1] (2017) and
[2] (2015). We again consider (d+ 1)-dimensional AdS space of the Randall
and Sundrum model in Euclidean Poincare coordinates:

ds2 =
dz2 + g̃µν(x)dxµdxν

(kz)2
, (1)

where ε < z < L (z = ε, L are positions of UV and IR branes), µ, ν =
0, 1, ...(d − 1), g̃µν(x) = δµν in all sections but one dedicated to Schwinger-
DeWitt expansion, k is AdS scale. Bulk scalar field Φ = Φ(~p, z) ”living” on
this space satisfies equation (~p is momentum in transverse d-space):

D̂(p)Φ =

[
−z2 ∂

2

∂z2
+ (d− 1)z

∂

∂z
+

(
ν2 − d2

4

)
+ z2p2

]
Φ = 0. (2)

In fact all formulas of the Report may be directly applied for any value
of non-integer ν (the case of integer ν will be discussed in Conclusion).

1.2 Hypothesis on higher spins.

Solution of Eq. of motion of field of any spin on AdS space has a form 2:

φµ1...µs ∼ zγI±ν(pz). (3)

The value of γ is irrelevant for us; for Bose field of spin s > 0 ν is equal to

ν =

√√√√m2

k2
+

(
s+

d− 4

2

)2

. (4)

For Fermi fields of spin s there are also quite simple expressions for ν [3].
Thus we may suppose that substitution of the proper values of ν in the

formulas of the Report will give quantum one-loop potentials and Schwinger-
DeWitt expansion for the fields of any spin s on the background of the one-
brane or two-branes Randall-Sundrum model.

This hypothesis needs to be verified. (See also Sec. 1.4 below).

2This follows from the most general group-theoretical considerations. I am grateful to
Ruslan Metsaev for clarifying this point.
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1.3 Asymptotic b.c.

General solution of Eq. (2):

Φ(z) = zd/2[C1Iν(pz) + C2I−ν(pz)]→ α(p) z
d
2

+ν + β(p) z
d
2
−ν (5)

at z → 0. In the framework of the AdS/CFT correspondence on the grav-
ity side α(p) plays the role of the source of single-trace operator Ô of the
boundary CFT whereas β(p) is its quantum average.

Witten showed in 2001 [4] that deformation of the Action of the boundary
CFT by the multi-trace term W (Ô) corresponds on the gravity side to the
asymptotic b.c. α = ∂W (β)/∂β. Double-trace deformation W = (1/2)fÔ2

gives α = fβ. Corresponding Green function looks as [5]:

Gf (p; z, z
′) = −kd−1(zz′)d/2 ·

·{[I−ν(pz) + f̄(p)Iν(pz)]Kν(pz
′) θ(z′ − z) + (z ↔ z′)}

1 + f̄(p)
(6)

f̄(p) = f

(
2

p

)2ν
Γ(1 + ν)

Γ(1− ν)
.

here L = ∞; f̄(p) is obtained from comparison of asymptotic of uf (z) =
zd/2[I−ν(pz) + f̄(p)Iν(pz)] with asymptotic (5) with account of b.c. α = fβ.

Difference of Green functions for two values of f : Gf2 − Gf1 ∼ (f2 −
f1)Kν(pz)Kν(pz

′) is UV-finite at coinciding arguments [5]:∫
[Gf2(p; z, z)−Gf1(p; z, z)] ddp < ∞. (7)

Also Gubser & Mitra [5] (see also Diaz & Dorn (2007) [6] and Hartman &

Rastelli (2008) [7]) calculated the UV-finite difference V
(d)

+ −V
(d)
− of quantum

potentials for regular (f2 = ∞) and irregular (f1 = 0) Green functions.
However, as it was pointed out in [5], it is hard to calculate this difference
for general values of f . This problem is resolved in the present report.
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1.4 Doubtfulness of expressions for a-anomaly obtained
for zero spin by Mitra & Gubser (2002) [5] (and
also by Diaz & Dorn (2007) [6] and Hartman &
Rastelli (2008) [7]), and for arbitrary spin by Giombi,
Klebanov, Pufu, Safdi, & Tarnopolsky (2013) [8]

In general for difference of quantum potentials corresponding to ratio of de-
terminants for two b.c. we have ([F ]2−1 ≡ F2 − F1):

[V (d)]2−1 =
1

2

∫ ddp

(2π)d
ln

[
Det2D̂(p)

Det1D̂(p)

]
?
=

1

2

∫ m2

dm̃2Tr

[
G(m̃2)

∂D̂

∂m̃2

]
2−1

=

(8)

=
1

2

∫ m2

dm̃2
∫ L

ε
dz

∫ ddp

(2π)d

[
G(p; z; z; m̃2)

∂D̂

∂m̃2

]
2−1

.

B-N or equivalently G-Y methods used in the report immediately give
simple formulas for ratio of determinants in (8), that is they permit to
”jump over” two integrations (over m2 and over z) in (8).

Now I comment the question mark over equality in (8).
There is no objections to the nice formula for difference of ”regular” and

”irregular” Green functions at coinciding arguments obtained in [5] - [7] for
spin zero and in [8] for any spin; for even spin it is given by the integrand of
formula (9.2) of [8] which for particular case d = 4 is equal to:

G
(4)
+ (x, z;x, z)−G(4)

− (x, z;x, z) ∼ (s+ 1)2 ν [ν2 − (s+ 1)2], (9)

here ν = ∆ − d/2 = ∆ − 2. For s = 0 this reproduces result of papers [5] -
[7] independently obtained by Saharian (2005) [9].

Doubtful is the calculation of the a-anomaly coefficient (proportional to
the difference of quantum energies) with integration of (9) over mass squared∫
dm2 =

∫
2ν dν [5] - [8]. In particular for d = 4 this integration gives Eq.

(9.3) of [8] (where we again changed ∆− 2→ ν):

V
(4)

+ − V (4)
− ∼ a

(s)
UV − a

(s)
IR ∼ (s+ 1)2 ν3[5 (1 + s)2 − 3 ν2]. (10)

For s = 0 this result coincides with one of [5] - [7], but drastically differs
from the results (also coinciding) of [2] and [9] obtained in different ways
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(Saharian [9] obtained expression for LHS of (10) by the direct calculation
of the energy-momentum tensor with use of Green functions (9)).

To our mind the pitfall is in the use of the familiar trick:

ln DetD̂ =
∫
dm2 ∂ ln DetD̂

∂m2

?
=
∫
dm2 Tr

[
G
∂D̂

∂m2

]
, (11)

where in [5] - [8] ∂D̂/∂m2 = 1 everywhere. This however is valid only
in situations when boundary conditions (which determine the spectra and
which are hidden in the LHS and RHS of (11)) do not depend on m2.

This is actually just the case for ordinary b.c. with fixed Robin coeffi-
cients. But we shall see below that for asymptotic b.c., including the ”reg-
ular” (+) and ”irregular” (-) cases, effective Robin coefficients depend on ν
that is on m2. Thus when asymptotic b.c. are imposed RHS of (11) (and of
(8)) must be modified with local boundary terms of ∂D̂/∂m2 which are not
taken into account in [5] - [8]. We shall clear up it below in subsection 3.2.

Thus we shall go another way which immediately gives ratio of determi-
nants in the LHS of (8) without calculation of difference of Green functions.

Looking forward we present now the expression for a-anomaly in
the one-brane RS-model obtained below in the Report (aUV −aIR ∼
V

(d)
+ − V (d)

− ):

Ṽ (d)(ν) = V
(d)

+ − V (d)
− =

2 sin(πν) Ωd−1

(2π)d+1d εd

∫ ∞
0

yd−1dy

Iν(y) I−ν(y)
. (12)

For higher spin fields the factor g(s) (number of degrees of freedom -
see e.g. (6.15) in [8]) must be included in the RHS of (12). For massless
high spin fields ν is integer or half-integer. The case of integer ν must be
considered separately - see discussion in the Conclusion. It would be nice to
have the analytical formula for Ṽ (d)(s) (12) for half integer ν = s = n+ 1/2
(n = 0, 1, 2...). I did not manage to find such a formula for definite
integral in (12).

1.5 Main results of the Report

(1) simple expressions for ratios of quantum DetD̂ for different Robin or
asymptotic b.c., and for corresponding one-loop potentials are obtained;

(2) Schwinger-DeWitt expansion for metric g̃µν(x) of the transverse space
in (1) is put down, induced Planck mass and gauge coupling are calculated.
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2 Equivalence of G-Y and B-N methods

2.1 Gelfand-Yaglom (G-Y) method (1960) [10] - [13]

G-Y method says that in the one-dimensional problem D̂Φn(t) = λnΦn(t)
(a < t < b) determinant DetD̂ for b.c. Φ̇(a) + raΦ(a) = 0, Φ̇(b) + rbΦ(b) = 0
(Φ̇ ≡ ∂/∂t), may be expressed through solution v(t) of homogeneous equation
D̂v(t) = 0 which obeys b.c. at one boundary, say at t = b. Then DetD̂ is
given by the combination of other b.c. built with this v(t):

DetD̂ ∼ v̇(a) + rav(a) D̂v(t) = 0 v̇(b) + rbv(b) = 0,

(13)

DetD̂ ∼ u̇(b) + rbu(b) D̂u(t) = 0 u̇(a) + rau(a) = 0.

Let us outline in short the proof of (13) which is double-step:
(1) for solution φ(z|λ) of Eq. D̂φ = λφ, which obeys b.c. at one end, say

at t = b: [φ̇(b|λ) + rbφ(b|λ)] = 0, function B(λ) ≡ [φ̇(a|λ) + raφ(a|λ)] have
zeroes at λ = λn: B(λn) = 0;

(2) since logarithmic derivative of B(λ) has poles in complex λ-plane
exactly at λ = λn it is possible to express ζ-function (ζ(s) =

∑
λn
−s) with

contour integral over this logarithmic derivative and finally, after a number
of rather conventional steps, to get the looked for G-Y formula e−ζ

′(0) =
DetD̂ ∼ B(λ = 0) = [φ̇(a|0) + raφ(a|0)] which is exactly the first line in (13)
(since φ(z|0) is a homogeneous solution v(z) obeying b.c. at t = b).

Note: Wronskian of two solutions u(t), v(t) introduced in (13) W (u, v) =
u̇ v − v̇ u is proportional to their corresponding G-Y combinations:

W (u, v) = −u(a)[v̇(a) + rav(a)] = v(b)[u̇(b) + rbu(b)], (14)

(u̇(a) = −rau(a); v̇(b) = −rbv(b) were used in W (u, v) in (14)). This elemen-
tary observation will permit us to demonstrate the equivalence of G-Y and
B-N methods when ratios of determinants for different b.c. are calculated.

2.2 Warm-up. Casimir potential in one line: a few
inspiring examples.

Let us show how G-Y method immediately gives familiar results obtained
conventionally in a rather lengthy way. Examples considered below refer to
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flat (d+ 1)-dimensional space and to elementary differential operator

D̂0(p) = − ∂2

∂t2
+ p2. (15)

1. Classical Dirichlet-Dirichlet problem (0 < t < L): φ(0) = 0, φ(L) = 0.
v = C · sinh(pt) is a solution of Eq. D̂0φ = 0 satisfying b.c. at t = 0. Then
according to G-Y method DetD−DD̂0 ∼ sinh(pL). This yields expression for

quantum potential in d dimensions: V
(d)
D−D =

=
1

2

∫ ddp

(2π)d
ln [sinh(pL)] = A+BL− 1

Ld
Ωd−1

(2π)d 2d+1 d

∫ ∞
0

yddy

ey − 1
, (16)

where A, B are irrelevant divergent constants. Last term is the Casimir po-
tential which is zero at L→∞ and which is UV-finite. It is easy to check that
this expression gives its well known values in (1+1) and in (3+1) dimensions:

V
(1)
CasD−DL = −π/24, V

(3)
CasD−DL

3 = −π2/1440 (for electromagnetic field this
result must be multiplied by 2 - number of polarizations of e-m field).

2. Md × S1 where S1 is a circle of length L = 2πρ. In this case spectra
of periodic (untwisted) or antiperiodic (twisted) modes are found from

cos(
√
λn − p2 L) = ±1. (17)

Then in untwisted case for example, DetuntwD̂(p) ∼ (cosh pL− 1). Thus:

V
(d)
untw =

1

2

∫ ddp

(2π)d
ln [cosh(pL)− 1] = ...− 1

Ld
Ωd−1

(2π)d d

∫ ∞
0

yddy

ey − 1
, (18)

where dots symbolise irrelevant divergent terms whereas the last expression
gives Casimir vacuum energy V

(d)
Cas,untw which is UV-finite and is equal to zero

at L→∞. It gives in particular well known result for torus in 5 dimensions,
i.e. for d = 4: V

(4)
Cas untw · ρ4 = −3ζ(5)/(2π)6, obtained by Candelas & Wein-

berg (1984) [14] with rather complex calculations. It is easy to get in the
same way well known values of Casimir potential for twisted modes.

3. In the same way the massless version of the final formula (22) of paper
[15] (Elizalde, Odintsov & Saharian - 2009) for Casimir potential for most
general Robin b.c. on both boundaries in flat space is obtained ”in one line”.

The generalization of these examples to massive scalar field is obvious.
Now we come to the ratios of quantum determinants of one and

the same differential operator and different b.c.
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2.3 Barvinsky-Nesterov (B-N) method (2005) [16]-[19]

B-N method roots in the fact that DetD̂ is given by a product of functional
integrals over bulk field Φ̄ and over boundary field Φb:

[DetD̂]−1/2 =
∫
DΦ eΦ D̂Φ =

∫
b
DΦb e

Φb F̂b Φb ·
∫

Φ=Φb

DΦ̄ eΦ̄ D̂bulk Φ̄, (19)

where ”Robin mass terms” are included in the boundary action. Thus in ratio
of determinants for two different b.c. bulk functional integrals reduce, and
this ratio is given by the ratio of determinants of B-N boundary operators:

Det2D̂

Det1D̂
=

detF̂2b

detF̂1b

. (20)

F̂b = −ĜDir ,tt′(t, t
′|x, x′)|| + r̂(x, x′) = [Ĝra,rb(t, t

′|x, x′)||]−1, (21)

F̂b, ĜDir, r̂, Ĝra,rb are (2 x 2) matrixes which elements are operators in
xµ space; symbol || means that t, t′ are taken at the boundaries t t′ = a b;
r̂ = diag(rb;−ra). Ĝra,rb is Green function obeying Robin b.c. at t t′ = a b.

Last equality in (21) is crucial in B-N approach, its general proof is given
in [16]. However this equality may be demonstrated easily in one-dimensional
problem parametrized by transverse momentum ~p when elements of (2 x 2)
matrixes in (21) are numbers.

In the one-dimensional problem Green function Gra,rb(t, t
′; p) is built in a

standard way with functions u(t), v(t) (13):

Gra,rb(t, t
′; p) =

u(t) v(t′) θ(t′ − t) + (t↔ t′)

u̇(t) v(t)− v̇(t)u(t)
(22)

Determinant of corresponding (2 x 2) matrix Ĝra,rb(t, t
′; p)||:

det(2x2)Ĝra,rb(t, t
′; p)|| = −

u(a) v(b)

W (u, v)
· vD(a) = [detF̂b]

−1, (23)

where W (u, v) is Wronskian, vD(t) is a solution of Eq. D̂v(t) = 0, satisfying
b.c.: vD(b) = 0, v′D(b) = 1. Thus summing up Eqs. (20), (21), (23) the
demanded ratio of one-loop quantum determinants is finally obtained:
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Det2D̂

Det1D̂
=

detF̂2b

detF̂1b

=
detĜr1a,r1b(t, t

′; p)||

detĜr2a,r2b(t, t
′; p)||

=

(24)

=
ur1a(a) vr1b(b)

W (ur1a , vr1b)
· W (ur2a , vr2b)

ur2a(a) vr2b(b)
=

[v̇r2b(a) + r2avr2b(a)] vr1b(b)

[v̇r1b(a) + r1avr1b(a)] vr2b(b)
.

Here last equality (obtained from (14)) demonstrates the equivalence of B-N
and G-Y methods.

Expression (24) is the main working tool of the report.

3 Ratio of determinants in RS-model

3.1 Two asymptotic b.c.

From now on we consider one and the same Robin b.c. at z = L < ∞,
and different asymptotic b.c. α = f1,2β at z → 0. Differentiation ∂/∂t in
previous sections now in Poincare coordinates (1) comes to z ∂/∂z.

Corresponding Green function is built of Gubser & Mitra function uf
obeying asymptotic b.c. α = f β (cf. (6)):

uf (z) = zd/2[I−ν(pz) + f̄(p) Iν(pz)]; f̄(p) = f

(
2

p

)2ν
Γ(1 + ν)

Γ(1− ν)
, (25)

and of function vrL(z) obeying Robin b.c. [zv′(z) + rLv(z)]z=L = 0:

vrL(z) = zd/2 {ArL [Iν(pL)] I−ν(pz)− ArL [I−ν(pL)] Iν(pz)} ,
(26)

ArL [ψ(pz)] =

(
d

2
+ rL

)
ψ(pz) + z

∂ψ(pz)

∂z
,

Wronskian W (uf , vrL) = z u′fvrL − ufz v′rL :

W (uf , vrL) = zd
2 sinπν

π
{ArL [I−ν(pL)] + f̄(p)ArL [Iν(pL)]}. (27)
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Then according to the B-N prescription it is obtained:

Qf2f1(p) ≡
Detf2D̂

Detf1D̂
=
uf1(ε)

uf2(ε)
· W (uf2 , vrL)

W (uf1 , vrL)
=

(28)

=
I−ν(p ε) + f̄1(p)Iν(p ε)

I−ν(p ε) + f̄2(p)Iν(p ε)
· ArL [I−ν(pL)] + f̄2(p)ArL [Iν(pL)]

ArL [I−ν(pL)] + f̄1(p)ArL [Iν(pL)]
.

Two Notes:
1) Qf2f1(p) → 1 exponentially at p → ∞. Hence (V

(d)
f2
− V (d)

f1
) given by

integral
∫
ddp lnQf2f1(p) is UV-finite (surely this is not true if ε = 0).

2) RHS of (28) depends on ε although there is no hint on ε neither in
Witten’s α = f β, nor in Wronskian (27) which zeroes (after substitution p→
i ω) determine spectrum of operator D̂(p) (2) corresponding to asymptotic
b.c. α = fβ at z → 0 and to given Robin b.c. at z = L.

Then: Why ε? Where does it come from?
The same question may be addressed to Mitra & Gubser [5] who limited,

just ”by hand”, integration over z in TrG (8) with the lower limit z = ε; that
is why quantum energy in [5] depends on ε (∼ ε−d).

The same happens with the Barvinsky & Nesterov definition of DetD̂ ∼
det(2x2)F̂b where functional integral (19) depends on positions of boundaries.

3.2 Effective Robin coefficients

As it was demonstrated above B-N method is equivalent to G-Y method.
But what does it mean in case of asymptotic b.c.?

B-N ratio (28) is equal to ratio of two G-Y combinations:

Qf2f1(p) ≡
Detf2D̂

Detf1D̂
=
v′rL(ε) + rε 2vrL(ε)

v′rL(ε) + rε 1vrL(ε)
, (29)

where effective Robin coefficients rε1,2 are calculated from the identity:

rε1,2(f1,2; p, ε) ≡ −
ε u′f1,2(ε)

uf1,2(ε)
= −d

2
−
ε I ′−ν(p ε) + f̄1,2(p) ε I ′ν(p ε)

I−ν(p ε) + f̄1,2(p) Iν(p ε)
≈

(30)

p ε�1
≈ −d

2
+ ν · 1− f1,2 ε

2ν

1 + f1,2 ε2ν

[
p ε�1→ −d

2
− ε I ′ν(p ε)

Iν(p ε)

]
,

11



where uf (z) is defined in (25). We see that asymptotic of rε at pε� 1 ([...] in
(30)) does not depend on f !!! That is why RHS of (29) → 1 at p→∞ - like
in (28); hence corresponding quantum potential is UV-finite. This evidently
is not the case of the conventionally fixed Robin coefficients rε1,2 in (29).

Boundary conditions may be imposed dynamically [16] with introduction
of the Robin mass terms in the boundary action. Corresponding terms must
be included in differential operator D̂(p) (2). In our case this term in D̂(p)
looks as rε δ(z − ε). And since effective rε (30) depends on ν, that is on m2,
this term must be taken into account in ∂D̂/∂ m2 in (8) or (11). This was not
taken into account in [5] - [8]; that is why their formulas for a-anomaly are
doubtful. It may be shown that RHS of (11) (or of (8)) where local boundary
terms of ∂D̂/∂ m2 are taken into account gives expressions for the one-loop
quantum potentials obtained by B-N or G-Y methods.

4 One loop for double-trace asymptotic α =

f β

4.1 Quantum potential for f and possibility of the gap
equation for f

Let us put down difference of potentials corresponding to ratio Qf2f1(p) (28)
when f1 = 0 (”irregular” asymptotic b.c.) and f2 → f - arbitrary double-
trace coefficient:

Ṽ
(d)
f,0 (ε, L) ≡ V

(d)
f − V (d)

f=0 =
∫ ddp

2 (2π)d
ln Qf,0(p) =

(31)∫ ddp

2 (2π)d
ln

[
I−ν(p ε)

ArL [I−ν(pL)]
· ArL [I−ν(pL)] + f̄(p)ArL [Iν(pL)]

I−ν(p ε) + f̄(p)Iν(p ε)

]
,

f̄(p) and ArL [I±ν(pL)] are defined in (25) and in (26).
For L =∞ (31) gives:

Ṽ
(d)
f,0 (ε,∞) =

Ωd−1

2(2π)d εd

∫ ∞
0

yd−1dy ln

[
I−ν(y)(1 + f̄(y, ε))

I−ν(y) + f̄(y, ε) Iν(y)

]
, (32)
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y ≡ p ε, f̄(y, ε) = [22νΓ(1 + ν) /Γ(1− ν)] [f ε2ν / y2ν ].
This potential is actually a function of dimensionless double-trace param-

eter fε2ν and may be written as ṽε(fε
2ν) / εd.

For L <∞ potential is a difference of two terms:

Ṽ (d)(f |ε, L) =
ṽε(fε

2ν)

εd
− ṽL(fL2ν)

Ld
. (33)

Thus, this potential can not surve a tool for dynamical fixing of the ratio
ε/L. This is quite different from the quantum one-loop potential obtained
for Robin b.c. at z = ε by Goldberger & Rothstein - 2000 [20], and by Carriga
& Pomarol - 2002 [21]. These authors showed that for integer ν potential
depends on ln(L/ε) - this gives hope for dynamical explanation of large mass
hierarchy.

It may be shown that ṽε(fε
2ν) in (33) is a monotonic function of its

argument. Whereas ṽL(fL2ν) may have an extremum in some range of values
of Robin coefficient rL. This question needs further studies.

In any case we may speculate that the double-trace deformation of the
boundary CFT f Ô2 is itself quantum induced from the higher power de-
formation, say g Ô4. Then double trace coefficient f may be found in the
framework of the AdS/CFT correspondence from a sort of gap equation

f = g < Ô2 >f (34)

where RHS is found from potential (33). This is also a topic for further
research.

4.2 Difference of ”regular” and ”irregular” potentials.
Where is the truth?

For difference of ”regular” (f = ∞) and ”irregular” (f = 0) one-loop quan-
tum potentials it is obtained from (31):

Ṽ
(d)
∞,0(ε, L) = V

(d)
+(L) − V

(d)
−(L) =

Ωd−1

2(2π)d

∫ ∞
0

yd−1 ·

(35)

·

 1

εd
ln

[
I−ν(y)

Iν(y)

]
− 1

Ld
ln


(
d
2

+ rL
)
I−ν(y) + y I ′−ν(y)(

d
2

+ rL
)
Iν(y) + y I ′ν(y)

 dy.
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For L =∞ second term is deleted and we get:

V
(d)

+ − V (d)
− =

Ωd−1

2(2π)dεd

∫ ∞
0

yd−1dy ln

[
I−ν(y)

Iν(y)

]
=

(36)

=
2 sin(πν) Ωd−1

(2π)d+1d εd

∫ ∞
0

yd−1dy

Iν(y) I−ν(y)
.

Second line results from integration by parts with account that Wronskian
W (Iν(y), I−ν(y)) = (2 sinπν/π) y−1.

Formula (36) essentially differs from the expressions for (V+−V−) obtained
in [5] - [7] - on the one side, and in [2] and [9] - on the other side. Thus
we have three answers for one and the same physically meaningful
quantity. Where is the truth?

5 Schwinger-DeWitt expansion

5.1 General expression

Let us transform bulk scalar field Φ(z, x) in a way:

Φ(z, x) = (kz)(d−1)/2 ϕ(z, x), (37)

and instead of (2) we consider differential operator for ϕ(z, x) wherel metric
g̃µν(x) is introduced and auxiliary ”eigenvalue term” λϕ is included:

D̂ϕ =

{[
− ∂2

∂z2
+

1

z2

(
ν2 − 1

4

)]
+
[
−4̃+ λ

]}
ϕ ≡ {D̂z + D̂x[g̃µν ]}ϕ. (38)

Here 4̃ = g̃µν(x)∇̃µ∇̃ν . It is evident that DetD̂ (38) is equal to DetD̂ (2).

D̂z, D̂x[g̃µν ] are corresponding differential operators in square brackets

in (38). Since they commute the heat kernel of differential operator D̂ =
D̂z + D̂x may be factorized, and conventional Schwinger-DeWitt expansion
of the heat kernel of operator D̂x[g̃µν ] may be put down in a standard way
with use of derivatives over auxiliary parameter λ. Presence of λ-term in
(38) means in practice that in all expressions given above in the Report we
must change p→

√
p2 + λ.
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Finally for quantum effective action Γ(d)[g̃µν(x)] calculated from ratio of

determinants of operator D̂ (38) for two asymptotic b.c. it is obtained:

Γ
(d)
f2f1

[g̃µν(x)] =
∫
d(d)x

√
g̃ ·

(39)

·
{ ∞∑
n=0

an(x, x)

(
− ∂

∂λ

)n ∫ ddp

2 (2π)d
ln Qf2f1(

√
p2 + λ)

}
λ=0

where Qf2f1 is given in (28); an(x, x) are Schwinger-DeWitt (Gilkey-Seely)
coefficients (a0 = 1, a1 = R̃(d)/6, a2 ∼ R̃(d)2 (symbolically), etc.); and λ
is an auxiliary ”eigenvalue parameter” (λ ≡ µ2 of the author’s paper [2]
”Sakharov’s induced gravity on the AdS...”); λ must be put to zero after all
differentiations over λ are fulfilled in (39).

5.2 S-DW expansion: 2-branes RS-model, d = 4. In-
duced Planck mass, etc.

We demonstrate how it works in the case of d = 4 and for difference of
”regular” (f2 = ∞) and ”irregular” (f1 = 0) quantum actions that is for
ratio of determinants (28):

Q∞,0(
√
p2 + λ) =

I−ν(
√
p2 + λ ε)

Iν(
√
p2 + λ ε)

· ArL [Iν(
√
p2 + λL)]

ArL [I−ν(
√
p2 + λL)]

(40)

(ArL see in (26)). With this Q∞,0 and for d = 4 expansion (39) takes the
form:

Γ
(4)
∞,0[g̃µν(x)] =

∫
d4x

√
g̃

{ ∞∑
n=0

an(x, x)

(
− ∂

∂λ

)n
· Ω3

2(2π)4ε4
·

(41)

·
∫ ∞
√
λε

(y2 − λε2) y dy ln

[
I−ν(y)

Iν(y)
· ArL [Iν(yL/ε)]

ArL [I−ν(yL/ε)]

]}
λ=0

=

=
∫
d4x

√
g̃

{
Ṽ

(4)
∞,0 +M2

PlR̃ +
1

4 g2
O(R̃2) +

∞∑
n=3

bn
1

[M2
SM ]n−2

O(R̃n)

}
,

where the substitution y =
√
p2 + λ · ε was used.
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For the first terms (n = 0, 1, 2) of Γ
(4)
∞,0[g̃µν(x)] it is obtained:

Ṽ
(4)
∞,0 =

Ω3

2(2π)4

∫ ∞
0

y3dy

{
1

ε4
ln

[
I−ν(y)

Iν(y)

]
− 1

L4
ln

[
ArL [I−ν(y)]

ArL [Iν(y)]

]}
. (42)

M2
Pl =

1

6

Ω3

2(2π)4

∫ ∞
0

y dy

{
1

ε2
ln

[
I−ν(y)

Iν(y)

]
− 1

L2
ln

[
ArL [I−ν(y)]

ArL [Iν(y)]

]}
. (43)

1

g2
=

Ω3

(2π)4
ln

[
I−ν(
√
λ ε)

Iν(
√
λ ε)

· ArL [Iν(
√
λL)]

ArL [I−ν(
√
λL)]

]
λ=0

=

(44)

=
Ω3

(2π)4

{
2ν ln

L

ε
+ ln

(
2 + rL + ν

2 + rL − ν

)}
.

The next one (a3 ∼ R̃3) term in expansion (41) looks as:

a3(x, x)
Ω3

4(2π)4
[a(ν) ε2 + b(ν, rL)L2], (45)

where coefficients a(ν), b(ν, rL) are numbers of order one, they are easily
obtained from the standard rows of Bessel functions near zero argument.

Since L � ε terms n ≥ 3 in (41) will be of order O(R̃3)L2, O(R̃4)L4,...
O(R̃n)L2(n−2)... In RS-model position L of the IR-brane fixes the mass scale
of Standard Model L ∼= M−1

SM . Hence Schwinger-DeWitt expansion (41)
beginning from its a3 term is actually an expansion in [M2

SM ]−1. Thus we
confirm the result of Section IV of the author’s paper [2] (2015) reached there
in essentially more complicated way.
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6 Remark in conclusion: integer ν.

Visible drawback of formulas above is in zero value of potentials for integer
ν. This is the difficulty of all the approach based upon different asymptotics
at z → 0 of Iν and I−ν coinciding at ν integer.

For ν integer Green functions of operator D̂(p) (2) may be constructed
with solutions zd/2In(pz) and zd/2Kn(pz), and there is no problem to build
the Green function obeying asymptotic b.c. αzd/2+n+βzd/2−n where α = fβ:

G(z, z′) ∼ [Kn(pz) + f̄n(p)In(pz)]Kn(pz′) θ(z′ − z) + (z ↔ z′)}
f̄n(p)

(46)

(we consider here L =∞ and exclude special case n = 0),

f̄n(p) = 22n−1n! (n− 1)!
f

p2n
(47)

in analogy with f̄(p) of Gubser & Mitra [5] - see (6).
And there is no problem to obtain with Barvinsky-Nesterov method sim-

ple expressions for quantum determinants - quantum potentials.
”Regular” asymptotic b.c. corresponds here to f =∞. But what value

of the double-trace coefficient f corresponds in Kn(pz) + f̄nIn(pz) to
”irregular” b.c.? The answer is unclear for me.
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